IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1970

Heat capacities of four rare earth trichloride hexahydrates from 5 to 300°K

Donald Clarence Rulf Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Physical Chemistry Commons</u>

Recommended Citation

Rulf, Donald Clarence, "Heat capacities of four rare earth trichloride hexahydrates from 5 to 300°K " (1970). *Retrospective Theses and Dissertations*. 4788. https://lib.dr.iastate.edu/rtd/4788

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digrep@iastate.edu.

RULF, Donald Clarence, 1940-HEAT CAPACITIES OF FOUR RARE EARTH TRICHLORIDE HEXAHYDRATES FROM 5 TO 300°K.

Iowa State University, Ph.D., 1970 Chemistry, physical

University Microfilms, Inc., Ann Arbor, Michigan

71-7321

HEAT CAPACITIES OF FOUR RARE EARTH TRICHLORIDE HEXAHYDRATES FROM 5 TO 300⁰K

by

Donald Clarence Rulf

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Physical Chemistry

Approved:

Signature was redacted for privacy. In Charge of Major Work

Signature was redacted for privacy.

Wead of Major Department

Signature was redacted for privacy.

Iowa State University Ames, Iowa

ac 1970

PLEASE NOTE:

Some pages have indistinct print. Filmed as received.

UNIVERSITY MICROFILMS.

TABLE OF CONTENTS

			Page
I.	IN	TRODUCTION]
II.	LI.	TERATURE SURVEY	4
III.	EX	PERIMENTAL DETAILS	20
	A.	Samples	20
•	Β.	Apparatus	27
	С.	Procedures	54
IV.	RE	SULTS	59
	Α.	Heat Capacities	59
	Β.	Magnetic Heat Capacities	83
	C.	Solution Entropies	95
٧.	DI	SCUSSION	102
	Α.	Heat Capacities	102
	B.	Magnetic Heat Capacities	108
	C.	Solution Entropies	115
VI.	BI	BLIOGRAPHY	118
VII.	AC	KNOWLEDGEMENTS	124

LIST OF TABLES

Tab]	e	Page
1	Results of emission spectroscopic analyses	25
2	Results of mass spectroscopic analyses	26
3	Experimental values of $Q/\Delta T$ for the addenda	. 60
4	Experimental values of $Q/\Delta T$ for benzoic acid	63
5	Experimental values of $Q/\Delta T$ for GdCl ₃ ·6H ₂ O	67
6	Experimental values of $Q/\Delta T$ for $TbCl_3 \cdot 6H_2O$	73
7	Experimental values of Q/AT for HoCl ₃ ·6H ₂ 0	75
8	Experimental values of Q/ Δ T for LuCl $_3$ ·6H $_2$ O	84
9	Lattice contribution to the thermodynamic functions of GdCl ₃ ·6H ₂ 0 for T <u><</u> 14 ⁰ K	8 6
10	Lattice plus magnetic contributions to the thermodynamic functions of GdCl ₃ ·6H ₂ O	87
11	Thermodynamic functions of TbCl ₃ ·6H ₂ 0	89
12	Thermodynamic functions of HoCl ₃ ·6H ₂ 0	90
13	Thermodynamic functions of LuCl ₃ ·6H ₂ 0	92
14	Standard state entropies	101

<u>\$</u>.

LIST OF FIGURES

Figur	e	Page
1	Vapor pressure as a function of solute concentration for the RC1 ₃ - H ₂ O system	23
2	Some of the principal features of the calorimeter	31
3	Details of the calorimeter can, adiabatic shield, and heater/thermometer assembly	35
4	Wiring diagram of the semi-automatic adiabatic shield control system	42
5	Difference function for studying the smoothness of the temperature dependence of the Minco thermometer resistance	47
6	Some of the principal features of the White double potentiometer	51
7	Difference function relating the present and some previously published benzoic acid heat capacities	65
8	Smoothed curve heat capacity of GdCl ₃ ·6H ₂ O	71
9	Heat capacity of HoCl ₃ ·6H ₂ O in the temperature region below 20 ^O K	80
10	Heat capacity of LuCl ₃ ·6H ₂ O in the temperature region of the anomaly	82
11	Magnetic heat capacity of TbCl ₃ ·6H ₂ 0	97
12	Magnetic heat capacity of HoCl ₃ ·6H ₂ 0	99
13	Difference function relating the present and some previously published GdCl ₃ ·6H ₂ O and HoCl ₃ ·6H ₂ O heat capacities	104
14	Precession photographs of a single crystal of LuCl ₃ ^{6H} 2 ⁰	107
15	Heat capacity of GdCl ₃ ·6H ₂ O in the temperature region below 10 ^O K	111
16	Ground state crystal field splittings from optical spectra	114

iv.

I. INTRODUCTION

Because of the fundamental importance of aqueous solutions to human existence and activity, there has been a continuous and general interest in the study of their properties. The study of, in particular, aqueous electrolytic solutions has been aided by the development of theoretical models, e.g., by Debye and Hückel (1923), to explain their behavior. The existence of these models has given rise to considerable experimental work, devoted to the testing of the theoretically predicted values of the various physical properties. This work has resulted in extending the models to more nearly represent reality. It has also resulted in the need for extensive data in the concentration range between infinite dilution and saturation.

The salts of the rare earths form a particularly valuable series of systems for the study of aqueous electrolyte solutions, in that they constitute a series of multivalent electrolytes, of which the members have similar chemical properties. They are also essentially completely dissociated in dilute aqueous solutions and are available in significant quantity and purity. The ions of the "heavy" rare earths are typically trivalent in aquecus solutions., In crystalline solids, the salts with common anions tend to form isostructural series.

The ready availability of kilogram quantities of rare earth salts, with impurity levels of the order of parts per million, has been made possible by techniques developed and practiced at the Ames Laboratory. The chemical similarity of the rare earths arises from the nature of the differences in their electronic structures. The configurations are such that the electrons of the 4f subshells, within which the differences occur, are

extensively shielded by those of the 5s and 5p subshells. Thus, they are largely excluded from participation in chemical bonding.

In recent years, a coherent program of study carried out at the Ames Laboratory has resulted in the determination of many of the physical properties of aqueous rare earth solutions. These properties have been studied as functions of solute concentration, cation radius, anion valence type and species, and temperature. In particular, the work on the thermodynamic properties of the solutions has demonstrated the need for precise thermodynamic data on the crystalline salts. For example, the calorimetrically determined entropies of the rare earth trichloride hexahydrates must be available before the entropies of the cations in the aqueous chloride solutions can be related to one another in a meaningful way. It is desirable to establish such relationships because they are useful in the development of a better understanding of ion-ion and ion-solvent interactions. Most of the previously available thermodynamic data on these particular salts, for example, that published by Hellwege, et al. (1961), and by Pfeffer (1962) are inadequate in two respects. First, the heat capacity measurements were not extended to room temperature. Second, the data above 100⁰K are generally in error by as much as 2%, because of the presence of occluded moisture in the samples. It was therefore desirable to obtain new and more precise heat capacity data in the range 5° K to 300° K.

A further reason for making heat capacity measurements in this temperature range is related to the spectroscopic properties of the rare earth ions. It is characteristic of these ions, in crystalline solids, that the total crystal field splitting of the ground electronic J level is of the order of several hundred wave numbers. Provided that the heat capacity of a

given crystal exhibits no anomalous behavior in the temperature range of interest, and that the thermal excitations of the vibrations of the lattice can be accounted for, the room temperature entropies provide a measure of that splitting. If other information on the energy level structure of the ions, in the crystal under study, is available, as from spectra, it is possible to compare the results of the optical with those of the thermal measurements.

The samples chosen for this work were the trichloride hexahydrates of Gd, Tb, Ho, and Lu. The Gd and Lu salts were used to set upper and lower limits on the lattice contributions, neither salt having a significant magnetic contribution above 14° K. Gd⁺³ has, to a first approximation, an 8 S_{7/2} ground state, which is not split by a crystal field. Interaction with higher J=7/2 states may, however, result in a non-degenerate ground state for the ion in the crystal. The ground state of Lu⁺³ is 1 S₀. The heat capacity of the corresponding salt contains no magnetic contribution.

II. LITERATURE SURVEY

It is intended that this review be indicative of the relationship between the research to be presented here and that already available in the literature. The alternative, being an exhaustive and critical examination of the literature, would be a project of considerable ambition and would in any case detract from the stated purpose.

In order to suggest the diversity of interests upon which this research has touched, it will be useful to mention some of the reviews and monographs available. These works serve as guides to the more influential of the original literature in their several areas. Moreover they provide insights into the directions taken during the development of their fields.

A standard work on the physical properties of electrolytic solutions is that of Harned and Owen (1943). Another useful book is that by Robinson and Stokes (1955), who emphasize the transport properties of electrolytes. The properties of rare earth ions in aqueous solutions have been discussed by several authors, notably Spedding and Atkinson (1959), Krumholz (1964), and Moeller, <u>et al.</u> (1968). The spectroscopic properties of the rare earth ions have been the subject of a great deal of research, which has been recently reviewed by Dieke (1968). Much of this work has been discussed by Carstein (1960), who has also reviewed work done on the heat capacities of rare earth salts up to about 1960. The subject of low temperature calorimetry has been treated by Westrum <u>et al.</u> (1968). The book by White (1968) is a standard reference on the practical aspects of low temperature work of all types. This brief listing suggests the scope of the material to be discussed during the rest of this review.

Among the most significant early contributors to the development of the theory of ionic solutions were: Arrhenius (1887), who established the existence of ions immediately upon the dissolution of electrolytes, Lewis (1901, 1907) who introduced activities and activity coefficients to measure deviations from ideality, and Milner (1912, 1913) who attempted a first principles calculation of the energy relationships involved in a distribution of positive and negative ions in a given volume. Of particular interest with regard to this last mentioned author, is that he implied, but did not state, that, for 1-1 electrolytes, his energy expression reduced, at very small concentrations, to a form dependent upon the square root of the concentration. This functional dependence upon the solute concentration has been one of the more useful features of the theory of ionic solutions. In 1923 Debye and Hückel (1923a, 1923b) introduced the concept of the "ionic atmosphere" which resulted in simple closed expressions for the behavior of the mean activity coefficient and related thermodynamic properties in the limit of infinite dilution. The validity of their development as a limiting law, its conceptual simplicity and its ready adaptability to comparison with experiment insured its immediate and lasting popularity. Thus, in comparing the work of Milner with that of Debye and Hückel, Noyes (1924) noted the relative unavailability of the former's treatment to those with "---ordinary mathematical training." Further, the appeal of a "mean distance of closest approach" in the Debye-Hückel theory as a concept upon which to rest intuitive arguments about the behavior of electrolytes is evident in the paper of La Mer and Goldman (1929).

The early development of electrolytic solution theory, extensions and critiques of the work of Debye and Hückel, and the theory's later development

up to the mid 1950's have been reviewed by Atkinson (1956). With regard to the transport properties of electrolytes, it is pertinent here to note only that a valid limiting law for electrolytic conductance was developed by Onsager (1927). This work was extended to a more general treatment of the motion of ions by Onsager and Fuoss (1932).

Subsequent to the appearance of the Debye-Hückel theory a great deal of interest developed in the interpretation of experimental results. Harned and Owen (1943) summarized much of this work. They also noted the philosophy that has logically, though not chronologically, guided the development of work in this field. That is, progress in the understanding of ionic solutions requires consideration of the effects of the forces of attraction between ions on all the known properties of the solutions. Experimental verification of the predicted values of the various properties, or conversely, lack of verification, promotes further development of the theory. A prerequisite for the testing of the conclusions of the theory is the existence of a class of strong electrolytes which are essentially completely dissociated at moderate concentrations.

With the development of a ready supply (Spedding and Daane, 1961) of high purity rare earth salts, a good example of such a class of electrolytes became available. The predominating variable across the rare earth series is the ionic radius, which generally decreases with increasing atomic number. This leads, as in the case of the trichloride hexahydrates, to small, regular changes in otherwise isostructural crystals. That, plus the chemical properties of the trivalent ions in solution, suggests the possibility of obtaining a great deal of data on a wide range of physical properties, several of which might be uniquely sensitive to one or another

of the approximations built into the theories of the behavior of electrolytes. In this context, the rare earths thus constitute a series with which it is highly desirable to work. Observations of this sort were made by Spedding, Porter, and Wright (1952a) in the introduction to the first of a series of papers in an extensive program of investigations of the properties of aqueous rare earth solutions. This work will be discussed in topical order. Although such separation is artificial in the sense that there is considerable overlap, it will correlate work that is most obviously mutually related.

The electrical conductivity of ionic solutions is of interest because, in sufficiently dilute systems, the ionic conductance is related to the mobility of ions and to their effective size. Therefore conductance measurements can be used to study e.g., the extent of hydration of ions. The above mentioned paper reported measurements of equivalent conductances of eight rare earth chlorides in the concentration range 4×10^{-4} to 0.1N. Λ° as a function of rare earth atomic number was approximately constant from La to Nd and decreased for the rest. The possibility of a change in hydration number was cited. Spedding and Yaffe (1952) measured the equivalent conductances of a series of the bromides with similar results. Thev reported that the Onsager limiting law was obeyed up to 10^{-3} N. Spedding and Dye (1954) repeated some of the previous chloride measurements to study the effect of hydrolysis. Dye and Spedding (1954) applied graphical integration techniques to Onsager's theory and, in so doing, extended the agreement with experiment to approximately 10^{-2} N. Spedding and Jaffe (1954a, 1954b) studied the equivalent conductances of ten sulfates, eight perchlorates, and three nitrates. They obtained poor agreement with theory with

the sulfates and interpreted this in terms of formation of complexes of the type $(MSO_4)^+$ in dilute solutions. Heiser (1958) obtained conductances for the nitrates of some intermediate and heavy rare earths. He correlated his work with that of Jaffe and observed behavior, relative to atomic number, "similar to that reported for the chlorides. Nelson (1960) measured the conductances of Tb bromide and chloride solutions at concentrations below 0.4N. The values of A and Λ^0 for the bromides were generally higher than for the chlorides. Sacger (1960) extended the conductance measurements into the moderate and high concentration ranges. He studied the chlorides of several light, intermediate, and heavy rare earths between 0.06N and satura-Except for La and Md, the equivalent conductance was a generally tion. decreasing function of atomic number. Further, $\Delta\Lambda$ was greater in the middle of the series than at either end. Conductance studies carried out prior to the present program included the work of Noyes and Johnson (1909) who attempted with little success to interpret the equivalent conductances of La nitrate and sulfate as functions of concentration. Also, Jenkins and Monk (1950) reported conductance measurements on La sulfate below 2x10⁻³N and a dissociation constant of 2.4x10⁻⁴ for the equilibrium LaS0₄⁺ \gtrsim La⁺³ + SO_4^{-2} . There was also the work of Jones and Bickford (1934) who compared the equivalent conductance of La chloride below 1 molar with the predictions of Kohlrausch's law and of Onsager's theory.

Activity coefficients are of interest because they are readily determined theoretically in the limit of infinite dilution, and more fundamentally because they serve to interrelate all of the interesting partial molal properties. They are necessary for a complete thermodynamic description of the system. Transference numbers are related to ionic mobility, but they

are also required for the determination of activity coefficients in dilute solutions, i.e. by the measurement of the potentials of concentration cells with transference. Therefore, these two properties will be discussed together.

Spedding, Porter, and Wright (1952b) reported transference numbers for eight chlorides up to 0.1N. The cation transference numbers were linear in the square root of the normality, but their limiting slopes differ from those predicted by the Onsager theory. They also reported (1952c) activity coefficients in the same concentration range, and obtained good agreement with the predictions of the Debye-Hückel theory. The transference number results were in good agreement with the earlier work of Longsworth and MacInnes (1938) on La chloride. Further transference number and activity coefficient results were published by Spedding and Yaffe (1952) on the bromides, Spedding and Dye (1954) on the chlorides, and Spedding and Jaffe (1954b) on the perchlorates and nitrates. With respect to the activity coefficients, a remarkable agreement between theory and experiment resulted, in part, from treating the "mean distance of closest approach" as an experimentally determined parameter which was then used in the calculation of γ >. Also, Spedding and Dye (1954) reported improved agreement between the transference number results and the predictions of theory when the latter were obtained on the basis of their graphical integration approach (Dye and Spedding, 1954). Heiser (1958) reported transference numbers and activity coefficients for the nitrates of Sm, Ho, Er, and Yb up to 0.2N. He noted that $\gamma \underline{+}$ as a function of concentration behaved anemalously for the Ho salt and suggested that the cause might be complex formation. Melson (1960) reported these data for Tb bromide and chloride below 0.2N, and noted the

variations in the limiting transference numbers with atomic number for the rare earths studied to that time, i.e. most of the chlorides and bromides. Saeger (1960) reported activity coefficients from 0.1N to saturation for a number of rare earth chlorides representative of the series. In general, he found good agreement between his and earlier work by Robinson (1937, 1939), by Mason (1938, 1941), and by Heiser (1958). The comparison with Mason's results suggested discrepancies in the composition of that author's solutions, i.e. oxychloride formation. Saeger noted that the functional dependence of his activity coefficients on concentration indicates increasingly strong ion-solvent interactions at high concentrations. Other noteworthy work on the activity coefficients of rare earth chlorides includes that done earlier by Shedlovsky and MacInnes (1939) and by Shedlovsky (1950) on dilute solutions of La chloride. Of historical interest is the work of Hall and Harkins (1916) who used the first commercially produced White Double Potentiometer in freezing point studies of La nitrate solutions.

Measurements of partial molal volumes yield information about the changes which occur in solution volume upon the addition of solute. They are of interest therefore in the study of ion-solvent interactions, e.g., the packing of solvent molecules about the solute ions with attendant reduction in effective solvent volume. For this reason the program under consideration has included considerable study of partial molal volumes and related properties.

Spadding, Pikal, and Ayers (1966) have recently published the results of investigations of apparent and partial molal volumes of the chlorides of La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Yb and the nitrates of La, Er, Nd,

and Yb in the concentration range $2 \times 10^{-3} < m < 0.2$. It is indicated that at infinite dilution the partial molal volumes of these systems are additive properties of the individual ions, as expected for completely dissociated solutes. The limiting values of the solute partial molal volumes form two distinct groups when plotted as a function of atomic number. There is a general decrease from La to Nd followed by a strong increase to Gd, with Sm approximately intermediate. After Gd and Tb, there is again a gradual decrease. The gradual decreases are interpreted as being due to the increasingly close packing of H₂O molecules in the first hydration sphere about the increasingly small, highly charged rare earth ions. Following this line of thought, the sudden increase in $\overline{V_2}^0$ is the effect of the loss of a water molecule from the first hydration sphere. The fact that the change is not completely discontinuous is considered to be due to a shifting equilibrium between two possible coordination numbers. The higher coordination number is said to be favored for the larger ions, with the lower being favored from Tb onward. Atkinson (1956) measured the compressibilities of the chlorides and nitrates of La, Nd, Er, and Yb in the concentration range m < 0.5. He noted that the agreement between experimental partial molal volumes and those calculated from theory, previously poor, was improved by approximately 15% when the solution compressibility was considered in the theory. His apparent molal compressibility values reflected a decreased compressibility of the solution relative to the pure solvent due to the close packing of the H₂O molecules about the rare earth ions. He also suggested the possible existence of an equilibrium between two first hydration sphere . coordination numbers within the rare earth series. However Ayers appears to be the first to explicitly state this postulate. Gildseth (1964) measured

density as a function of concentration and temperature, in the ranges 0 < m < 3.4 and $20^{\circ}C < T < 80^{\circ}C$, for La and Nd chloride solutions. He reported partial molal volumes and expansibilities at various concentrations and temperatures. Correlation of these results with those of Saeger (1960) indicated that the behavior of $\overline{V_1}$ is consistent with strong orientation of the H₂O dipoles toward the rare earth ions. It is expected that H₂O molecules beyond the first hydration layer are also bound to the ion and ordered to a considerable extent. He further noted that while the expansibility and compressibility results were consistent with this point of view, those from conductance and transference number measurements were ambiguous.

A systemmatic investigation of the physical properties of a class of electrolytes necessarily includes the obtaining of a large amount of thermal data. Spedding and Miller (1952a) measured the heat capacities and enthalpies of solution and dilution of the (anhydrous) chlorides of Ce and The concentration range of the dilution measurements extended up to Nd. 0.4 molal. The agreement with the limiting law predictions was to within experimental error below 0.002 molal. They noted that the heat of solution to infinite dilution is a measure of the difference between the lattice energy of the crystal and the hydration energy of the ions. Comparison of these data for two members of an isostructural series of, say chlorides, allows a correlation to be drawn between hydration energy and ionic radius. They also reported (1952b) heats of solution for the hydrated chlorides of Ce and Nd. They used these data, standard electrode potentials for Ce and Nd, and the methods of Latimer (1951) to estimate the aqueous entropies of the ions. Spedding and Flynn (1954a, 1954b) measured the heats of solution of some of the rare earth metals and of the anhydrous chlorides of La, Pr,

Ce, Sm, Gd, Er, Y, and Yb. They made similar measurements on the hydrated chlorides of La, Pr, Sm, Gd, Y, Er, and Yb. The heats of solution of the hydrates formed three groups as a function of atomic number. The results for the heptahydrates and for the hexahydrates to Gd formed two groups, while those for the Er and Yb salts formed the third. The authors suggested that the anomalous Er and Yb results were due to a structural change for these salts relative to the lighter members of the series. A more likely explanation stems from Pepple's (1967) observation that Flynn's calorimeter, designed for work on the metals, was not sufficiently sensitive to the relatively smaller solution enthalpies of the hydrates. Spedding, Naumann, and Eberts (1959) reported the heat of solution of the hydrated Nd chloride and the heats of dilution below 0.2 molal for La, Nd, Er, and Yb chloride and for La and Yb nitrate solutions. They found that the measured apparent molal heat contents of the lighter chlorides and nitrates agreed with the limiting law predictions but that those of the heavier rare earths did not. They suggested that this was due to hydrolysis in the extremely dilute solutions for which pH > 5. Bisbee (1960) measured the heats of solution of Tm, Lu and anhydrous LuCl₃ in HCl, and of anhydrous Tm and Lu chlorides to infinite dilution in water. The non-linear behavior of the heats of solution of the chlorides, of this and previous work, as functions of rare earth atomic number was due to a variation in the crystal structure of the salts across the series. Csejka (1961) and DeKock (1965) measured the heats of dilution of a large number of chlorides representative of the series, and published their results jointly (Spedding, Csejka, and DeKock, 1966). The limiting slopes of the apparent molal heat contents from their data generally agreed well with the predicted values. The Φ_1 values from this and previous

work, plotted as functions of atomic number, formed separate groups for the light and heavy rare earths with Sm and Gd results intermediate. This effect was qualitatively discussed in terms of the functional dependence of on the mean distance of closest approach in the Debye-Hückel limit. A discrepancy between these results and Φ_{I} obtained from heat of solution work on the anhydrous chlorides, suggested a relatively long-lived metal-chloride complex, to the existence of which the heat of solution calorimetry was insensitive. This postulate was supported by the much better agreement found between the Φ_1 values and those obtained from the heat of solution work on the trichloride hexahydrates of Nd and Dy. Spedding and Jones (1966) published the results of heat capacity measurements of the chlorides of La, Nd, Eu, Er, and Yb in the concentration range 0.1 molal to saturation. These values were consistent with a change in the first hydration. sphere coordination number across the series. They noted that factors relatively unimportant in dilute solutions, such as complex formation, became increasingly important to the measured properties at high concentrations. X-ray diffraction measurements, conducted by Brady (1960) on Er chloride and iodide solutions, suggested the existence of considerable metal-halide ion pairing at concentrations above - 1 molar. Walters (1968) has recently measured the heat capacities, at concentrations above 0.1 molal, for the chlorides of Pr, Sm, Eu, Gd, Tb, Ho, Tm, and Lu, the nitrates of La, Nd, Gd, Er, and Lu, and the perchlorates of La, Nd, Gd, and Lu. The apparent molal heat capacities formed two series for the chlorides and perchlorates. The author commented on the need for more data on the nitrates. For the solutions of the heavy rare earths, the solvent partial molal heat capacities showed a sharp increase at high concentrations, i.e. $m^2 \sim 1.9$.

This was explained qualitatively as being the result of an anion entering the first hydration sphere of the metal, dislodging a H₂O molecule and simultaneously reducing the net surface charge density of the hydrated complex. Each of these processes would contribute to an increase in C_{pl} by increasing the freedom of movement of the hydrated H_2O molecules. The chloride solutions of Gd, Tb, and Ho from Walter's work were the source of the crystals grown for the research to be reported by the present author. Pepple (1967) has measured the heats of dilution of the chlorides of Nd, Sm, Eu, Gd, Dy, Er, Tm, and Lu from infinite dilution to saturation. He has also measured the heats of solution of the hydrated chlorides of La, Pr, Nd, Sm, Du, Gd, Dy, Er, Tm, Yb, and Lu and tabulated the values of the heats of solution and partial molal excess entropies of these and of the corresponding Tb and Ho salts. These last values were based on the work of DeKock (1965). The heats of solution as functions of rare earth atomic .number formed two groups rather than three as observed by Spedding and Flynn (1954a, 1954b). In this more recent work, the discontinuity occurs between Pr and Sm. Following Eu, the values fall on a smoothly increasing curve to Lu.

Some other measurements of the solution thermal properties of the rare earths will be noted. These include the work of Matignon (1906a, 1906b) on the heats of solution of, e.g., the trichloro hydrates of Pr and Nd, and that of Bommer and Hohmann (1941) on the heats of solution of a number of the metals in HC1. Mathan, Wallace, and Robinson (1943) reported some of the first work on the heats of dilution of 3-1 electrolytes in their study of La chloride solutions below 0.025 molal. They also studied the sulfate system. Lohr and Cunningham (1951) reported the standard enthalpies of formation of the aqueous La and Pr ions. Their work involved the use of rare earths as "stand-ins" during the development of procedures for the preparation and characterization of Am. Lange and Miederer (1956) measured heats of dilution of La nitrate solutions, and Sieverts and Gotta (1928) the heat of solution of La and Pr. Jekel, Criss, and Cobble (1964) have recently studied the temperature dependence of the partial molal heat capacity of dilute solutions of Gd chloride in the range $0^{\circ}C < T < 100^{\circ}C$. Their results are expected to be only approximate, since they involve an estimation of the heat capacity of the anhydrous crystal based on an extrapolation of the published heat capacity of the trichloro hexahydrate. These latter values (Hellwege et al., 1961) are incorrect in the temperature range $100^{\circ}K < T < 300^{\circ}K$ by as much as 2%, as will be shown in a later section.

The trends across the rare earth series, observed in a number of the properties already discussed, have also been found in the standard heats of formation of some chelates. Mackey, Powell, and Spedding (1962) reported standard enthalpies, free energies and entropies of formation for the rare earth-EDTA complexes based on calorimetrically determined heats of reaction. The enthalpy changes form two groups, with the transition occurring at approximately Eu. Their results also showed the considerable contribution of the entropy term to the stability of the rare earth complexes. Thus for the complex Gd-EDTA, (-) ΔF_{f}^{0} is approximately 23 kcal/mole and (-) ΔM_{f}^{0} and ΔS_{f}^{0} are of the order of 1.7 kcal/mole and 71 cal/mole respectively. Similar measurements had been reported previously by Betts and Dahlinger (1959) who determined the enthalpy changes from the temperature dependence of the stability constants. They suggested a change in coordination number of the metal ion with respect to the chelate as a means of explaining the trends in

their entropy values. Mackey, Powell and Spedding (1962) have argued against this interpretation since, e.g., the trends observed in the enthalpies of formation are essentially independent of the chelating agent. Edelin De La Praudiere and Staveley (1964) have observed irregular trends across the rare earth series in the heats of formation of the nitrilotriacetate complexes. The factors which are important to complex formation and to the stability of complexes have been discussed by Grenthe (1964). He suggested that the large entropies of formation result from a breakdown in the ordered arrangement of the H₂O molecules around the hydrated metal ion, due to the presence of the ligand.

The work on solution properties discussed here, especially that of Spedding and Miller (1952b), and the general interest in rare earth complexes have illustrated the desirability of having calorimetric data on, e.g., the crystalline rare earth trichloride hexahydrates. The only high temperature data presently available are contained in a series of papers published by Hellwege and his co-workers (Hellwege <u>et al.</u>, 1959, 1961, 1962; Pfeffer, 1961a, 1961b, 1962). The temperature ranges covered by these heat capacities generally exclude room temperature. For the La and Pr crystals (Hellwege, <u>et al.</u>, 1959), the measurements extend up to 280°K, but with respect to the others the highest temperature reported was 260°K for the Gd salt (Hellwege <u>et al.</u>, 1961). In general, data were given in the range $1.5^{\circ}K \leq T \leq 220^{\circ}K$. Implicit in this is the presence of an error, in all of their data, caused by occluded solution in their crystals. In particular, Hellwege, <u>et al</u>. (1961) noted that the GdCl₃·6 H₂0 sample contained excess moisture amounting to ~ 0.2% of the sample weight.

The effect of occluded moisture on the heat capacities of crystalline

hydrates has been recently studied by Gerstein (1960) in the case of the ethylsulfates of Tm and Lu: These results indicated that the errors became significant at temperatures at least above 220° K. Above this temperature the excess water manifests itself in a broad bump in the plot of C_p as a function of T, extending to approximately the ice-point. The maximum in this bump lies as much as several percent, (in C_p), above the "true" curve. Therefore, values obtained by extrapolation of data in this temperature range will be consistently too large. The data cannot be corrected for this error since the low temperature heat capacity of the saturated solutions are generally unknown. Because of the wide interest in the thermodynamic properties of these rare earth salts, it was considered desirable to redetermine the heat capacities of a series of trichloro hexahydrates. It is expected that knowledge of S^o₂₉₈, combined with presently available solution data (Pepple, 1967), will lead directly to the determination of rare earth ionic entropies.

It is characteristic of the rare earth ions in crystalline solids, that for those electronic ground states for which the degeneracy is removed by interaction with a crystalline electric field, the total splitting of the components produced by such interaction is of the order of kT at room temperature. The implication is that thermal data i.e., magnetic entropies as determined from heat capacity measurements, are a measure of the crystal field splittings of the rare earth ions. Spectroscopically determined ground state components, for the rare earth ions in two of the salts of particular interest in this present study, are available in the literature. Dieke (1968) have tabulated values for the thirteen-levels in the 7F_6 state of ${\rm 1b}^{+3}$ in TbCl₃·6 H₂0, determined from the fluorescence spectrum. Kahle (1956) has published values for the lowest four levels in the ${}^{5}I_{8}$ state of Ho⁺³ in HoCl₃·6H₂O observed in absorption. He noted that at sample temperatures such that the next higher components would be significantly populated, the absorption bands became too broad for resolution of the levels. An opportunity therefore exists to study the contribution to the entropy from the thermal population of these levels, and to compare that obtained from calorimetry to that calculated from the spectroscopically determined levels.

III. EXPERIMENTAL DETAILS

A. Samples

As has been mentioned, the crystalline trichloride hexahydrates of Gd, Tb, and Ho were prepared from the solutions used by Walters in his solution heat capacity measurements. The crystals of Lu trichloride hexahydrate were grown from a solution prepared by dissolving the metal oxide in an excess of reagent grade HCl. The oxide was obtained from the Ames Laboratory's rare earth separations group. During the preparation of the hydrates, steps were taken to minimize the effects of hydrolysis, oxychloride formation, and the occlusion of saturated solution by the crystals. Prior to the heat capacity measurements, samples of each of the salts were analyzed chemically, and emission and mass spectroscopically.

Gerstein has shown that the heat capacity of a crystalline hydrate is sensitive to the presence of excess water in the sample. It was therefore necessary to give considerable attention to the problem of occlusion and absorption of moisture. This problem will be briefly discussed in order to make the sample preparation procedure more meaningful.

The situation that exists when the hydrate is formed, reversibly, from the saturated solution is:

$$RCl_{3} \cdot 6 H_{2}O(xtl.) + H_{2}O(g) \neq RCl_{3}(satd.)$$
 (1)

This is a two component, three phase system, for which the equilibrium vapor pressure is fixed by the temperature. If the system loses water and goes, reversibly, to a lower hydrate, say the trihydrate, the situation is represented by:

$$\text{RCl}_3 \cdot 3 H_2^0 \text{ (xtl.)} + 3 H_2^0 \text{ (g)} \neq \text{RCl}_3 \cdot 6 H_2^0 \text{ (xtl.)}$$
 (2)

The equilibrium vapor pressure for this system is also fixed at a given temperature. Between the extremes represented by equations 1 and 2, the crystalline hexahydrate co-exists in equilibrium with its vapor. This equilibrium is represented by:

$$H_20$$
 (of hydration in xtl.) $\neq H_20$ (g) (3)

At a given temperature, there will be a range of vapor pressures within which this situation may obtain.

One may observe the vapor pressure as a function of the relative solute concentration, as in Figure 1 for the case of $R \equiv Gd$. These data were obtained by monitoring the pressure over the solution while pumping water away to a cold-trap. The equilibria represented by equations 1 and 3 are indicated in the figure. If water in the crystals is allowed to come to equilibrium with water vapor at a pressure below the vapor pressure of the saturated solution and above that of the decomposition products, the crystals will contain no excess moisture. Because of the total absence of the solution phase, the heat capacity will be that of the stoichiometric hexahydrate. The situation which exists in the lowest portion of the curve in Figure 1 is probably more complex than that represented by equation 2.

Haeseler and Matthes have studied the thermal decomposition of a number of the rare earth trichloride hexahydrates, in particular, those of Gd, Tb, and Ho. They found that "in air", these salts were stable with respect to the next lower hydrates at temperatures at least as high as 50[°]C. In atmospheres consisting of air-HCl mixtures, these temperatures were of the

order of $70^{\circ}-90^{\circ}C$. The stability also tended to increase with rare earth atomic number. The ultimate decomposition products observed were the oxychlorides, which became stable at temperatures of the order of 200° - $300^{\circ}C$. Intermediate were a series of tri-, di-, and mono-hydrates, stable over various temperature ranges.

Saeger (1960) has determined the equivalance pH at 25⁰C for the hydrolysis reaction:

$$R^{+3} + H_2 0 \rightleftharpoons R(0H)^{+2} + H^{+}$$
(4)

He has found it to be of the order of unity for the saturated solutions of the heavy rare earth chlorides.

In order to prepare the crystalline hexahydrates, the chloride solutions were slowly evaporated over a period of weeks. During this time, the temperatures and the pH values of the solutions were maintained at 45° C and within the range 0.5-1.5 respectively. The crystals, when formed, were allowed to remain in contact, at room temperature, with the saturated solutions for periods of the order of a week. The crystals were removed by filtration, crushed, and placed in desiccators over CaCl₂ solutions to "equilibrate". The concentrations of the CaCl₂ solutions were adjusted, using the data of Kolthoff and Sandell (1952) so that their equilibrium vapor pressures were within the range such that only water vapor and hexahydrate could co-exist in equilibrium at room temperature. The crystals were periodically crushed to produce increasingly fine powders. This procedure guaranteed more rapid equilibration in the desiccators and improved the thermal contact of the samples during the heat capacity measurements.

Prior to the heat capacity measurements, portions of the samples were

analyzed chemically as a check on the waters-of-hydration concentration. The analyses were performed under the supervision of Robert Bachman of Analytical Chemistry Group I. The values of "n" in $\text{RCl}_3 \cdot n \text{ H}_20$ were found to be: 6.1^{+} 0.1 for $R \equiv \text{Gd}$, 5.9^{+} 0.1 for $R \equiv \text{Tb}$, 5.9^{+} 0.1 for $R \equiv \text{Ho}$, and 5.9^{+} 0.1 for $R \equiv \text{Lu}$. Other portions of the samples were converted to the oxides and submitted to Analytical Services Group II for emission spectrographic and to Analytical Group III for mass spectrographic analyses. The results of these determinations are presented in Tables 1 and 2.

Table 1. Results of emission spectroscopic analyses (impurities in PPM by weight

Element	^{6d} 2 ⁰ 3	Tb407	Ho203	Lu ₂ 03
Nd	<100			, , , , , , , , , , , , , , , , , , ,
Sm	<100	<200		
Eu	<100	<20		
Gd		<200		
1Ъ	<500			
Dy	<50	<100	<150	
Ho	<2.00	<100		
Er	•		<500	160
Tm	÷ 4		<200	<10
Yb			<<50	~17
Sc			100	<5
Ϋ́.	<500	<50	<100	<10
Fe	<10	60	<50	<30
AT	60	50	10	10
Ca	<10	40	<10	200
Si	<10	<20	40	145
Ta				<2.00
Mq	• •			<10
Cŭ	· ·			< 10
Ni				<10
Cr	•			<10
		•		

Element	Gd203	^{Tb} 4 ⁰ 7	Ho203	Lu203
Be B F Na A1 Si P S C1 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te I Cs Ba	$\begin{array}{c} 0.5\\ 0.8\\ 7.5\\ 6.5\\ 3.5\\ 45.0\\ 0.45\\ \leq 2.0\\ 45.0\\ 1.5\\ 30.0\\ \leq 1.0\\ \leq 1.0\\ \leq 1.0\\ \leq 1.0\\ \leq 1.0\\ 0.25\\ 0.65\\ 0.35\\ 1.6\\ 0.008\\ 0.27\\ 0.75\\ 10.05\\ \leq 0.03\\ N.D.\\ 0.27\\ 0.75\\ 10.05\\ \leq 0.03\\ N.D.\\ 0.06\\ N.D.\\ N.D.\\$	2.0 2.0 9.0 2.0 4.0 30.0 \leq 4.0 300.0 \leq 1.0 \leq 1.	$\begin{array}{c} 0.7\\ 1.0\\ 5.0\\ 5.0\\ 7.0\\ 40.0\\ 0.8\\ \leq 0.7\\ 150.0\\ 0.6\\ 6.0\\ N.D.\\ <1.0\\ 0.6\\ 6.0\\ N.D.\\ <0.2\\ 1.0\\ <1.0\\ 0.1\\ 0.1\\ 0.1\\ 0.2\\ \leq 0.02\\ N.D.\\ N.D.\\ N.D.\\ N.D.\\ N.D.\\ N.D.\\ N.D.\\ S.0\\ \leq 1.0\\ <1.0\\ <1.0\\ N.D.\\ N.D.$	40.0 0.4 200.0 1.0 ≤0.3 0.5 0.4 0.1 2.0 2.0 0.5

Table 2. Results of mass spectroscopic analyses (impurities in PPM, atomic)

Element	Gd203	^{Tb} 4 ⁰ 7	Ho203	Lu203
Се	0.6	0.3	1.0	<u><</u> 0.6
Pr	0.6	0.5	2.0	<u><</u> 2.0
Nd	1.2	6.0	2.0	0.7
Sm	2.0	2.0	1.0	<u><</u> 0.4
Eu	0.5	0.4	0.4	<u><0.08</u>
Gd	100	<u><20.0</u>	10.0	<u><</u> 0.2
ID	N.D.	100	2.0	<u><</u> 0.0
Dy	3.0	2.0	2.0	0.4
HO Fin	<10.0	5.0		0.2
Er Tm	2.0	N.D.		0.0
LIII VIS	~20.0	20.0	1 0	1.0
- ID En	2 0	<5 0	0.3	ΰn
Lu Hf	<0.5	N D	2.0	10
Ta	<1.0	0.4	6.0	
W	<1.0	N.D.	N.D.	•
Re	N.D.	N.D.	N.D.	
0s	N.D	N.D.	N.D.	
Ir	N.D.	N.D.	N.D.	
Pt	N.D.	N.D.	N.D.	
Au	N.D.	N.D.	N.D.	
Hg	N.D.	N.D.	N.D.	
11	N.D.	N.D.	N.D.	
Pb	1.0	2.0	0.6	3.0
Bi	N.D.	N.D.	N.D.	150 0
Th	0.5	N.D.	N.D.	150.0
U	N.D.	N.D.	N.U.	

Table 2. (Continued)

B. Apparatus

The equipment directly associated with the measurement of heat capacities from liquid helium to room temperatures can be conveniently discussed in terms of its several constituent parts. Each of these is associated with a specific function. It is felt, therefore, that descriptions of each of the components and of their relationships to one another will also say quite a bit about the measurement as a whole. The calorimetric apparatus itself

.

can be broadly broken down into: the calorimeter¹, the adiabatic shield control system, the thermometer and the sample heater, with their associated wiring and power sources, and the measurement station. This last part contains the potentiometer, with which the sample temperatures and sample heating data are measured. It also contains the timing apparatus which controls the heat added to the sample, and the various standard resistors, switches, voltage dividers, and circuitry which are necessary for the measurement. Skochdopole (1954) has described many of the circuits associated with the measuring station. Therefore, only the first three parts and the potentiometer will be considered. Of these four, three were constructed or installed specifically for use in making the measurements reported here.

1. Calorimeter

In general, three factors have contributed to a standardization of the design of low temperature calorimeters. These are, first, the long and active history of calorimetry, beginning approximately with the work of Gaede (1902) and Nernst (1910). Secondly, physical requirements, e.g. thermal isolation, limit the number of ways in which a basic design can be varied. Thirdly, the need for measurements of the highest practicable precision from a given laboratory and for the highest attainable degree of reproducibility among laboratories has resulted in the use of similar components and procedures by the various workers in the field.

¹The term "calorimeter" will be used to describe the mechanical part of the apparatus taken as a whole. The term "calorimeter can" or simply "can" will mean the removable component directly containing the sample.

The calorimeter designed and built for this problem is of a widely used type described by Westrum <u>et al.</u> (1968), and pictured in Figure 2 of their article. The resemblence to Figure 2 of the present work illustrates the degree of standardization which exists. Because of the ready availability of descriptive material in the literature, (see also the monograph by White (1968)), this discussion will be limited to the details of interest with respect to this particular instrument:

Figure 2 is a schematic drawing of the adiabatic calorimeter used in this research. For clarity, the smaller components have not been shown. The device consists essentially of a vacuum space, within which are contained: a liquid nitrogen reservoir (A), a liquid helium reservoir (C), and economizer (B), a "floating ring" (D), (henceforth called "RING"), an adiabatic shield (E), a calorimeter can (F), and numerous radiation shields (G). Each of these components contributes specifically to the thermal isolation of the can containing the sample under study, and/or to the control of its temperature. In particular, they are all either gold- or chromium-plated to reduce radiative heat transfer. The liquid inlet and vent tubes are indicated as lines, as is the cable supporting the calorimeter can. The liquid transfer lines, electrical lead inlet, and winch are all located above the top horizontal line in the figure. They are all similar to the corresponding parts of Westrum's apparatus, except for the electrical lead inlet.

A bundle of 41 copper leads (B&S Gauge #34) enters the vacuum space through a seal consisting of two circular plates, between which are pressed two rubber "O-rings" in machined grooves. Approximately 2 meters of slack leads are helically wound in the vacuum space above the nitrogen
Figure 2. Some of the principal features of the calorimeter

ò

3]

reservoir (A). The wires are thermally grounded to the top and bottom of (A), having been separated and glued with G.E. 7031 adhesive. Electrical insulation is provided by S&S weighing paper, which is glued between the wires and the component. Radiation shielding is provided by aluminum foil, which covers the portion of the wires in contact with the reservoir. Another 2 meters of slack leads are interposed between (A) and (B). The function of (B) is to pre-cool the leads before they come into contact with the helium reservoir (C). The leads are thermally grounded to (B) and (C) in the same manner as to (A).

Except for that of the vacuum jacket and one shield, the entire weight of the calorimeter is suspended from the inlet and vent tubes of (A). The strength requirements placed on these lines results in considerable heat transfer to the nitrogen tank and makes it necessary to replenish the liquid daily. The helium reservoir and all components beneath it, except the can, are suspended by a network of 15-pound-test nylon lines from (A). Stainless steel rods were originally used for this purpose, but their presence resulted in a heat leak of approximately 0.1 kilocalories hour⁻¹ from (A) to (C). Ashworth and Steeple (1968) has recently studied the various contributions to heat transfer in calorimeters of this type. The incorporation of some of his suggestions into this apparatus, including the lining of the inside of the vacuum jacket with aluminum foil has decreased the heat leak such that one liter of liquid helium lasts approximately 23 hours. This performance is, in view of the laboratory's present capability to recover the helium, satisfactory; but the basic design of the calorimeter can still be much improved in this respect. For example, thermal contact between the shields (G) and the reservoirs to which they are gounded can be improved as suggested by Ashworth.

The electrical leads proceed from the bottom of (C) to (D), around which they wrap approximately 2½ times and to which they are thermally tied. Approximately 12 inches of slack are interposed between (C) and (D). The purpose of the RING (D), is to pre-warm the leads either to the temperature of the adiabatic shield (E) or to some other temperature at the option of the experimenter. After leaving the RING, the leads go to the middle of the adiabatic shield (MASH)² around which they are non-inductively wound and thermally tied. Figure 3 shows an exploded view of this portion of the calorimeter in detail. At the bottom of the MASH the bundle of leads is separated into two parts. Those wires used for thermocouple leads pass through a small hole in the MASH, while the rest are attached with low-thermal-e.m.f. solder, (White, 1958), to copper binding posts. These binding posts, passing through the WASH, effectively separate the leads from one another and provide points of attachment inside the shield for the heater and thermometer leads.

From the binding posts, two leads of #38 copper and one of #36 manganin go to the sample heater, wound in helical grooves on the heater/thermometer shell. The latter is shown on the right in Figure 3. (See also Figure 7 of Westrum's article (1968). Four leads of #38 copper provide electrical contact between the binding posts and the platinum resistance thermometer. Several inches of slack in the lead bundle thermally separate the heater/ thermometer shell from the shield. Inside the shell, the leads are wound twice around and glued to a tube on the shell cover. Approximately two

²The words MASH, TASH, and BASH will, for convenience, be used to specify the three parts of the adiabatic shield. While not universally accepted, they are sufficiently widely recognized to justify their use.

Figure 3. Details of the calorimeter can, adiabatic shield, and heater/ thermometer assembly

additional inches of slack wire separate the cover from the thermometer. The heater is further isolated from the outside in that its leads are noninductively wrapped five times around the 0.05 inch brass support posts of the shell. The heater, #46 Advance, with a resistance of about 300 ohms is kept in place with formex enamel which has been baked onto the assembly. Wherever in the heater/thermometer shell assembly the leads are thermally tied or are soldered to other wires, they are similarly enameled and baked.

The calorimeter can itself is made of 0.025 inch thick copper and consists of a heater/thermometer well, can body, and inner and outer covers. A removable four-bladed thermal contact fin made of the same material is inside the can. The inner and outer covers are attached with bismuth-cadmium eutectic solder (White, 1968, Hansen, 1958). The rather wide grooves are necessary because of the rapid deterioration of the surface of the solder at the melting temperature (about 140°C). Thermal contact between the can, the TASH, and ultimately the helium reservoir, is obtained by raising the former with the winch via a suspension line made of braided steel cable from a strip-chart recorder, a single loop of 15-pound-test nylon line, and a coiled steel spring between the two. Following the loading of a sample into the can and sealing of the cover, the air can be removed and helium introduced via the silver tube shown to the left of the thermal contact cone. Subsequently the silver tube can be fused shut, as it It was found that the best technique for performing this last is shown. operation is to apply to the end of the silver tube, temporarily pinched shut, the maximum flame attainable from a hand-held oxygen-propane torch for the minimum time necessary. This is routinely of the order of one second. With the exercise of some care this method is consistently successful.

Three multiple junction thermocouples, consisting of manganin/Au-Fe/ chromel-P/Au-Fe sections are attached between the MSH, TASH, and BASH and the corresponding parts of the can. Manganin was used in preference to copper because their thermal conductivities compare approximately as 1:400, at 10° K. These thermopiles serve to monitor the temperature differences between the can and shield and are the sensors of the adiabatic shield control system, (either automatic or manual). A similar thermopile monitors the MASH-RING temperature difference. Other thermocouples of the type Au-(2.1 At.%)Co/Cu enable one to monitor the temperature of the shield with respect to that of the helium reservoir. This last is especially useful during liquid helium transfers.

Heat is introduced from the shield control system to the RING, MASH, TASH, and BASH via heaters of 1200, 1000, 3500, and 3900 ohms resistance respectively. The ratios of these resistances were determined by the requirement that all shield components heat at the same rate for the same voltage across each resistor. These resistors are non-inductively wound on their respective components, under the main body of leads in the case of the MASH. In order to insure uniform heating of the components, the heaters are everwound near the edges. Another heater of approximately 750 ohms is wound on the bottom of the helium reservoir and is used primarily to melt solid nitrogen, following a series of measurements during which that material has been used as a refrigerant.

2. Adiabatic shield control

Control of the temperature of the adiabatic shield relative to that of the can may be maintained either manually, as discussed by Skochdopole

(1954), or semi-automatically. The semi-automatic system used in this research consists of four individual control channels, one for each of the shield components, including the RING. Each of the three main channels contains a Leeds and Northrup "M-line" deviation amplifier (Model #177258), an "M-line" controller (Model #177251), and a Kepco voltage-regulated D.C. power supply (Model #ABC 200M). The RING channel (Model #687293) contains similar components of Honeywell manufacture and has the capability that the deviation amplifier "zero" may be offset by any desired amount up to ± 45 millivolts. The power supply unit in the fourth channel uses a silicon-controlled rectifier power supply (Model #R7170A). Finally, the output voltage of the MASH deviation amplifier is monitored with a strip-chart recorder. This gives a continuous record of the quality of the shield control throughout the course of a run, since the behavior of the other components closely follows that of the MASH.

The deviation amplifier is a high-gain, $(10^6 \text{ referred to the input})$, low-noise D.C. amplifier designed to reliably detect and amplify signals in the microvolt range, as from the shield-can difference thermopiles. The sensitivity of the instruments used here is of the order of ± 0.2 microvolt. The lower detection limit imposed by the presence of extraneous thermal e.m.f.'s in the thermocouple circuits is probably of the order of 0.1 microvolt. The output voltages from the deviation amplifiers are developed across the input terminals of the controllers. Similarly, the output voltages of the controllers are developed across the input terminals of the Kepco units, and determine the power developed in the shield heaters.

The controller units are amplifiers, the feedback circuits of which are designed to perform various functions such as proportioning and reset

control. Proportioning control involves effectively, varying the output of the controller amplifier. When adjusted to a relatively "wide proportional band" setting, the controller's response to an offbalance voltage from the deviation amplifier is to partially cancel the effect of that voltage. Therefore, in order for the power supply unit to send a given current through the shield heater, an even larger offbalance voltage is required from the deviation amplifier. This results in the temperature difference between the shield and the can varying over a relatively wide range. When the controller is adjusted to a relatively narrow proportional band setting, the power supply unit "sees" the full effect of the offbalance. voltage from the deviation amplifier and accordingly sends a relatively larger current through the heater. The temperature difference then varies over a much narrower range. Obviously the second condition is preferable. However, in order for it to exist, the response time of the shield must be approximately equal to that of the control system. For example, at temperatures below about 15° K the relatively low heat capacity of the shield causes the system to over-react. Even on a narrow proportional band setting, the control system requires a finite time to respond to a sudden change in the shield temperature i.e., as on being heated by the control system. The result is that the shield strongly overheats relative to the Similarly at any temperature, if the difference thermocouples and/or can. heaters are not in sufficiently good thermal contact with their respective components, the shield behaves sluggishly compared to the control system. The function of reset control is to gradually attenuate the proportioning feedback voltage. The length of the attenuation cycle is governed by the time constant of the reset circuit, which is adjustable.

Figure 4 is the wiring diagram for the adiabatic shield control system. Electrical leads from the calorimeter enter at the lower right of the figure. Those from the A.C. line enter at the lower left. The difference thermocouple leads are electrically shielded, as are the leads between the deviation amplifiers and the controllers. All of these shields are connected at a common point, to a good earth ground. The IK and 2.5K resistors between the controllers and the Kepco power supplies are necessary to minimize a "base" heater current which is inherent in the system. Their presence reduces the zero-level power developed in each of the adiabatic shield heaters from about 5 milliwatts, which is significant, to about 10^{-3} microwatts, which is not. The leads between the RING power supply and its heater is interposed an isolating transformer. This serves to protect the silicon controlled rectifier from a possible short circuit at the RING heater.

In practice, the controller settings are determined by the behavior of the control system. This in turn, for a properly designed shield assembly, is largely a function of the temperature range in which measurements are being made. In the range $4^{\circ}K < T \le 7^{\circ}K$ there is a strong tendency for the system to over-react as noted above. Quite acceptable control can be maintained however, with "wide" proportional band settings and no reset attenuation. In the range $7^{\circ}K \le T \le 30^{\circ}K$ the temperature of the shield follows that of the sample both at the beginning and at the end of a heating period. Shield control to within ± 0.5 microvolts is maintained in this range by the gradual "narrowing" of the proportional band and the addition of reset control with increasing temperature. The poorest control is observed in the

Figure 4. Wiring diagram of the semi-automatic adiabatic shield control system

range 30° K \leq T \leq 80 $^{\circ}$ K. This region is characterized by the shield temperature being out of step with that of the can, both at the start and at the end of a heating period, by about 1 microvolt. The specific behavior is complex and depends upon the controller dial settings, the nature of the refrigerant in the helium reservoir, the RING-MASH temperature difference, the sample heating rate, and the thermal conductivity within the calorimeter This last depends upon the thermal contact between the sample and the can. calorimeter can. Within this temperature range, the quality of the control may be maintained to well within acceptable limits (i.e., such that the "hot" and "cold" deviations average to zero over the measurement of a data point, and remain less than a microvolt in magnitude) by the partial use of manual control. In the range $80^{\circ}K \le T \le 300^{\circ}K$ the best control is observed. The control system accepts relatively "narrow" proportional bands and high reset attenuation rates. The temperature deviations average to zero to within ±0.2 microvolt. With the thermopiles previously described, the sensitivity of the system is such that the rate of heat transfer between the can and the surroundings per unit thermopile offbalance is approximately 10 millijoules minute⁻¹ microvolt⁻¹.

3. Thermometer

As originally conceived, the calorimeter was to have included two thermometers. The need to minimize the mass of the addenda, relative to that of the sample, required them to be no heavier totally than a single thermometer of the type normally used. One of them, a germanium resistor, would have been useful in the measurement of temperature differences below 15^oK. The other was to have been a miniature platinum resistor, to be used

in the range 10° K \leq T \leq 300 $^{\circ}$ K. At the time the thermometers were obtained, only three examples of the miniature platinum resistor were available. These were all made by the Minco Products Company. Gehring and Gerstein (1967) had studied the effect of thermal shocking to liquid helium temperatures upon the reproducibility of the resistance of these thermometers at the triple point of water. On the basis of their results it was felt that, in spite of a peculiarity in the construction of the thermometers (to be discussed later) they would be suitable for calorimetry. Accordingly, an attempt was made to calibrate the Minco thermometer (serial #42) in the temperature range of interest.

The Minco thermometer and an L&N platinum thermometer (serial #1549568), to be used as a standard, were placed in machined holes in close proximity in an approximately one kilogram copper block. Aprizon-T grease was used to provide thermal contact between the thermometers and the block. This assembly was suspended in place of the can, inside the adiabatic shield, and the calorimeter was used as a calibrating device. The calibrating procedure involved maintaining the temperature drifts at such a value that any two adjacent temperature measurements did not deviate by more than 10^{-3} degrees. Two sets of six consecutive measurements were made of the Minco temperature, and each set was bracketed by a similar set of measurements on the L&N instrument. Each grouping of five sets thus measured constituted a calibration point. Such points were determined at five degree intervals in the range 20^{0} K<T<0⁰K, and at ten degree intervals thereafter.

The smoothness of the temperature dependence of the resistance of a thermometer is of major importance in calorimetry. A difference function of the form:

$$F(R) = \frac{(R_{PT})_T / (R_{PT})_{T'} - (R_{ST})_T / (R_{ST})_{T'}}{(R_{PT})_T / (R_{PT})_{T'}}$$
(5)

was chosen to study this property for the Minco instrument. The subscripts refer to the Minco thermometer (PT), some standard (ST), whose resistance is known to vary smoothly with temperature, a fixed temperature (T'), such as 273° K, and some variable temperature (T). The standard was chosen to be a hypothetical platinum resistor of ideal purity. The resistance ratio for such a resistor has been determined as a function of temperature by Berry (1963).

Figure 5 is a plot of F(R) as a function of temperature in the range $50^{\circ}K \le T \le 290^{\circ}K$. Each of the dashed curves represents a separate attempt to characterize the region. The behavior of the Minco thermometer is strongly discontinuous and non-reproducible over an appreciable portion of the temperature range of interest. This behavior is evidently due to the peculiar nature of the construction of the thermometer.

Such an instrument normally consists of a coil of strain-free platinum wire, wound on a mica form and joined to two electrical leads at each of its ends. These four leads then extend through a vacuum seal to the outside of the thermometer case. The construction of Minco #42 differs in that a length of Kovar wire connects one end of the platinum to the external leads. Thus, the Kovar is effectively a part of the temperature-sensing element. Appreciable strains probably develop within the seal and thus result in the unpredictable behavior of the thermometer. Since all of the available miniature platinum thermometers had the same design fault, they were useless

Figure 5. Difference function for studying the smoothness of the temperature dependence of the Minco thermometer resistance

for calorimetry. This made it necessary to eliminate the germanium resistor also, because of the size of the other available commercial platinum units.

The thermometer actually used for the heat capacity measurements was the L&M instrument, employed in the Minco calibration. Prior to its being installed in the heater/thermometer assembly discussed earlier, determinations were made of its water-triple-point resistance. The results of these determinations, in terms of the ratio of the resistances of 25 and 100 ohm standard resistors, were compared to the results from the previous measurement of another N.B.S. calibrated thermometer. The ratios agreed to within better than 0.01%. This measurement served as a check on the stability of the thermometer over a period of time, and as a guarantee that it had not suffered from mechanical or thermal shock since it had been calibrated.

4. Potentiometer

Skochdopole (1954) has described the circuitry which interconnects the thermometer, the sample heater, their respective power sources and regulating devices, and the potentiometer. Therefore, this information will not be discussed in detail. A one or four milliamp current, constant to the order of a part in 10^5 , is supplied to the thermometer by three Willard batteries. The choice of the magnitude of the current is at the option of the experimenter. The current through the thermometer and the voltage drop across it are measured with a potentiometer of a type suggested by White (1914a, 1914b) and designed and built by the Leeds and Northrup Company.

In general it is desirable for a potentiometric measuring circuit to have certain characteristics such as: (a) the existence of no undetermined resistances in the measuring dials, (b) the occurrence of no change in the resistance in series with the battery (to within one part in 10^5) due to a change in the dial settings, (c) a constant (to within 0.5%) resistance in the galvanometer circuit, (d) thermal e.m.f.'s in the galvanometer circuit which are relatively small and insensitive to the measuring dial settings and (e) a potentiometer resistance which is optimal with respect to its effect on the galvanometer sensitivity. In this work it is necessary to measure two different voltages of approximately equal magnitude on a single set of potentiometer resistors. These voltages may be, for example, the potential drop across the thermometer and that across a standard resistor in the thermometer current circuit. Moreover, these measurements are made alternately at half-minute intervals. Obviously, in order to avoid the great opportunity for error involved in changing the settings of each of four dials twice a minute, it is desirable to be able to use the single motion of a double-throw switch to accomplish the change. The design of the White double potentiometer is such that it displays the stated characteristics plus several others which, taken together, make it quite well suited to the purpose at hand.

Figure 6 illustrates the development of some of the principal features of this instrument. Part (a) represents a simple potentiometer circuit. The symbols stand for the potentiometer battery (BA), the unknown voltage (e), and the standard cell (e_s). Two alternative ways of arranging the measuring dials are shown in part (b). In the arrangement on the left, the battery circuit is not affected by the contact resistance, but the effect of

Figure 6. Some of the principal features of the White double potentiometer

thermal e.m.f.'s will be seen in the galvanometer circuit. In the arrangement on the right, the contacts are in the battery circuit, where the thermal e.m.f.'s are in series with the relatively large battery voltage, hence negligible. The contact resistance will, however, effect the battery current. For this reason, the switches on the right must be of a high quality relative to those on the left. In either arrangement, it is necessary to add compensating resistors so that the resistance in the circuit containing the contacts remains constant for any dial setting. These are shown in part (c). Also in part (c), it has been indicated how two potentiometers of the type shown in part (b) are joined to form a "combination" potentiometer. A "combination" potentiometer becomes a "double" potentiometer when provisions are made for: (1) two independent sets of dials upon which the value of two independent voltages may be set and (2) a way of switching the potentiometer(s) between them. The diagram suggests how these two requirements are met. The galvanometer and the potentiometer(s) are exchanged between the two voltages to be measured by means of a six-pole, two-throw master switch, which is not shown. The connections joining the measuring dials (e) and the galvanometer are actually routed through this switch, rather than as shown in the figure. The complexity of the circuits is such that the essential features tend to become lost in diagrams of greater detail. Also, such detail is readily available in the original papers by White (1914a, 1914b) and in the L&M publications concerning the White potentiometers. Several advantages exist for the potentiometer arrangement in part (c). The lower potenticmeter may have a battery circuit resistance of the order of 2×10^4 ohms without affecting the galvanometer sensitivity. The lower dials thus tend not to cause problems of contact

resistance. With those dials placed in the battery circuit, thermal e.m.f.'s are not seen in the galvanometer circuit. The upper potentiometer, across which 99,000 out of 99,990 microvolts may be balanced, is then of a design which is more reliable from the standpoint of the elimination of contact resistance from the battery circuit. The presence of two potentiometers allows one set of resistors to be characterized in terms of the other set. The entire double potentiometer can then be made to be internally self-consistent. Further, the measurement of two voltages on a single set of potentiometer resistors allows the errors in the resistors to effectively cancel in the ratio of the voltages. A practical advantage of this instrument is the simplicity of its design as compared to that of an electronic voltage measuring device of approximately the same sensitivity. This simplicity is important for the relative directness with which difficulties, when they occur, may be located, understood, and corrected.

Two White double potentiometers were used during the course of this work. The first, having the L&N serial #777877, eventually became worn out from the cumulative effects of approximately twenty years service. The principal problems with this instrument occurred in the master switch. By the time the heat capacity measurements of the final sample (the Lu salt) were begun, it had become necessary to dismantle and clean this switch prior to each day's run. At that time, another instrument had become available. This one, having an L&N serial #770299 was auto-calibrated and used to finish the set of heat capacity measurements. Auto-calibration is the procedure whereby the double potentiometer is made internally selfconsistent, as mentioned above.

C. Procedures

Westrum, <u>et al</u>. (1968) have published a detailed review of current practice in adiabatic low-temperature calorimetry. Skochdopole (1954) and Gerstein (1960) have described the techniques used in the Ames Laboratory during the 1950's. Although procedures often are changed to meet varying requirements, the measurements in this work were carried out in much the manner described by these authors. The only significant differences arose from the use of semi-automatic adiabatic shield control and from the need for special care in preparing the hydrated samples. Each of these topics has been discussed in an earlier section. Because of the essential similarity of the present techniques to those of previous authors, some of what follows is repetitious. However, it is felt that a brief description of the experimental procedures used in this work will contribute to the continuity of the entire discussion.

A carefully weighed quantity of the sample plus a quantity of dry helium at 2 cm Hg pressure and 298[°]K are sealed into the calorimeter can and the seal is leak-tested. In the case of a hydrate, the equilibrium vapor pressure of water over the sample is measured and adjusted if necessary, prior to the sealing of the can. The can is inserted into the calorimeter, as described in the previous section, and the heater/thermometer assembly and thermocouple junctions attached. All of the components within the adiabatic shield, including the electrical leads but excluding the sample, are considered to be "addenda." In order to avoid measuring the heat capacity of the addenda for each sample measured, every effort is made to keep the addenda constant. In practical terms, this means

continuously monitoring the weight of the can, the solder, the thermal contact grease, and any other part of the addenda that might change as a result of handling.

The heat capacity (vide infra) associated with the mean temperature of the interval $[T_1, T_2]$ is (Westrum, <u>et al.</u>, 1968).

$$C = \frac{Q}{T_2 - T_1}$$
 (6)

For the system consisting of sample plus addenda, C is determined between . any two temperatures by introducing heat in the form of a measured amount of electrical energy and observing the resultant temperature change. One such determination constitutes the measurement of one data point. During a determination, the system is thermally isolated from its surroundings by the calorimeter, in particular the vacuum system, and by the adiabatic shield, which is kept at the same temperature as the surface of the can. In general, adiabatic conditions are not perfectly maintained because of: (1) the existence of temperature gradients along the leads and along the shield and can surfaces, (2) extraneous thermal e.m.f.'s in the shield control thermocouple circuits, which result in non-zero temperature differences between the can and the shield, (3) self-heating of the thermometer, which is essentially constant over a series of samples and is therefore a part of the addenda, and (4) heat introduced to the can via the winch line, a constant in the same sense. These imperfections appear as regular variations in the sample temperature with time. These temperature "drifts" are measured and are used in the determination of T_1 and T_2 , the "initial" and "final" temperatures at the middle of the heating period.

Specifically, the voltage drops across the thermometer and across a standard resistor in series with it are observed typically for six minutes prior to the introduction of heat, and again for six minutes after the return of the system to a steady state, following heating. The "final" drift of a given data point is the "initial" drift of the following point. Temperature differences are observed to the order of 0.001 degree, while temperatures may be known to 0.01 degree.

The electrical energy introduced to the system during a heating period is measured by observing the voltage drop across a known fraction of a resistor in parallel with the sample heater and the voltage drop across a known resistor in series with the heater. It has been shown (Skochdopole, 1954) that heating measurements need be made only during the three minutes bracketing the center of the heating period. That is, comparisons have been made between the heat input values determined from power measurements made over the central portion of the heating period and those determined from measurements made over the entire period. These comparisons have shown that the former method results in an accuracy in determining the heat input which is at least an order of magnitude better than our ability to measure ΔT .

Calculation of the heat introduced to the system and of the initial and final temperatures of a heating period, for which the raw data are the voltage measurements and the known resistance values, are made on the IBM 360 computer. The program for performing these calculations was written in 1963 by M. K. Rhyne of the Ames Laboratory Computer Services Group. As an example of the data treatment, the computer converts the thermometer voltage and resistance data to temperatures and least-squares fits the

temperature-time points for a given temperature drift to a straight line. If the mean deviation of the data from the line is greater than that which would lead to an error in ΔT of one half the expected experimental error, the machine may least-squares fit the drift as a function of temperature to the two drifts on either side of the drift in question. The performance of this last operation is at the discretion of the experimenter. The temperatures at the midpoint of a heating period are determined on the basis of the initial and final drifts and the time between midpoints. The "mean" heat capacity (equation 6) of the sample at a given temperature is then calculated from the measured heat input and temperature change, the previously determined addenda heat capacity, and the known weight, corrected to vacuum, of the sample.

To the extent that the heat capacity is linear in temperature over a sufficiently small temperature interval, the mean heat capacity is approximately equal to the true heat capacity:

$$C_{p} = \frac{dH}{dI})_{p} = \frac{\lim_{\Delta I \to 0} 0}{\Delta I \to 0}_{D}$$

(7)

(Here constant pressure, to which the experimental conditions provide a sufficiently good approximation, has been specified.) Methods exist (Mestrum, et al., 1968) for the correction of the mean heat capacities for the "curvature" effect, and are frequently applied, especially in regions of relatively rapid change in the slope of the heat capacity as a function of temperature. One of the criteria for choosing a given sample heating current, prior to the start of a run, is the desired value of ΔT . For regions of the heat capacity curve in which there is no anomalous behavior,

and for which C_p varies sufficiently slowly with temperature, ΔT is routinely chosen to be of the order of 10% or less of T. For the present measurements, ΔT was seldom larger than 15 degrees at the highest temperatures reported.

The computer-generated heat capacities are plotted as a function of temperature on one meter wide graph paper and the smoothed curve values are obtained from a spline-fit curve. Graphical tests are routinely applied to the data to determine whether curvature corrections are necessary. In this work it was always the case that such corrections were not necessary. The smoothed curve typically fitted the data to within $\pm 0.1\%$ in the range 50° K \leq T \leq 230°K. Above 230°K there were usually a number of experimental points deviating from the smoothed curve by $\pm 0.15\%$ or more. The precision below 30°K will be discussed in connection with the benzoic acid results. The thermodynamic functions, equations 8, 9, and 10 were obtained by computerized graphical integration of the smoothed curve results.

$$S_{T}^{0} = \int_{0}^{T} C_{p} / T \, dT$$
(8)

$$H_{T}^{0} - H_{0}^{0} = \int_{0}^{T} C_{p} dT$$
 (9)

$$\frac{F_{\rm T}^{\rm o} - H_{\rm 0}^{\rm o}}{T} = \frac{H_{\rm T}^{\rm o} - H_{\rm 0}^{\rm o}}{T} - S_{\rm T}^{\rm o}$$
(10)

IV. RESULTS

A. Heat Capacities

1. Addenda

The calorimeter can used in these measurements weighed approximately 134 grams. The Bi/Cd solder and the Ag exchange gas port added another 3 grams. The heater/thermometer assembly weighed approximately 16 grams. Thus the weight of the addenda was of the order of 153 grams, exclusive of thermal contact grease, bolts, wires, and adhesive. The average sample weights were of the order of 100 grams. The addenda contributed somewhat more than one third of the total heat capacity at 300⁰K. The can and the heater/thermometer shell were gold-plated.

Table 3 lists the smoothed curve values of $Q/\Delta T$ as a function of T for the addenda. These values were determined from two sets of measurements made over the entire temperature range. The precision over both sets of measurements was $\pm 0.1\%$ of $Q/\Delta T$, except as previously noted. The precision of the data within a single set of measurements was of the order of several hundredths of a percent. This difference between the precision of the individual data sets and the over-all precision is possibly due to the anomalous behavior of the heat capacity of Apiezon-T grease in the temperature region above 200° K, (Westrum <u>et al.</u>, 1967). The addenda contained approximately 70 milligrams of this material, as noted above. The difference was found to be <u>not</u> related to the magnitude of the sample heating current, the behavior of the adiabatic shield control, variations in the cleanliness of the measuring circuit switches, or variations in the addenda, aside from the grease. The reproducibility of the thermometer is such as

т(^о к)	Q/ΔΤ			т(^о к)		Ω/ΔΤ	
0 1 2 3	0.000 0.002 0.004 0.008	•		45 46 47 48		12.081 12.649 13.228 13.805	
4 5 6 7 8	0.016 0.027 0.044 0.067 0.097			49 50 51 52 53		14.387 14.965 15.542 16.124 16.704	
10 11 12 13	0.136 0.182 0.237 0.300 0.375			54 55 56 57 58		17.280 17.855 18.422 18.990 19.556	
14 15 16 17 18	0.465 0.569 0.688 0.821 0.971			59 60 61 62 63		20.116 20.675 21.230 21.778 22.321	
19 20 21 22 23	1.137 1.325 1.535 1.763 2.016			64 65 66 67 68		22.858 23.392 23.916 24.424 24.932	
24 25 26 27 28	2.288 2.583 2.904 3.242 3.601			69 70 71 72 73		25.422 25.908 26.381 26.851 27.317	
29 30 31 32	3.982 4.381 4.800 5.242			74 75 76 77	• •	27.784 28.250 28.705 29.160	•
33 34 35 36 37	6.169 6.650 7.148 7.662			- 78 79 80 81 82		29.808 30.053 30.484 30.918 31.346	
38 39 40 41 42	8.190 8.724 9.270 9.817 10.375			83 84 85 86 87		31.765 32.174 32.576 32.970 33 355	•
43 44	10,936		1	88 89		33,737	

Table 3. Experimental values of Q/ Δ T for the addenda (joules deg.⁻¹)

т(⁰ К)	Q/AT		Т(⁰ К)	Q/ΔT
90	34.459	·	185	51.776
91	34.803		190	52.175
92	35.147		195	52.549
93	35.483		200	52.909
94	35.808		205	53.257
95	36.133		210	53.583
96	36.448		215	53.889
. 97	36.762		220	54.186
98	37.074		225	54.467
99	37.380		230	54.741
100	37.679		235	54.997
105	39.117		240	55.245
110	40.450		2.45	55.489
115	41.664	• · · · ·	250	55.727
120	42.799		255	55.952
125	43.848		2.60	56.168
130	44.821		265	56.380
135	45.725		270	56.584
140	46.560		275	56.778
145	47.324		280	55.959
150	. 43.026		- 285	57.137
155	48.685		290	57.307
160	49.293		295	57.465
165	49.863		300	57.618
170	50,390		305	57.762
1/5	50.890		310	57.902
034	51.348		315	58,029

Table 3. (Continued)

to be unrelated to observed effect. Multiple measurements of the heat capacity of a given sample have confirmed the general $\pm 0.1\%$ reproducibility of the data.

2. Benzoic acid

The heat capacity of about 0.48 moles of 1949 Calorimetry Conference standard benzoic acid was measured as a check on the operation of the calorimeter. The experimental values of $Q/\Delta T$ and of $Q/\Delta R$ are listed in

Table 4. The columns labeled "Block Number," so-called by local convention, list the numbers of the original data sheets.

A bump due to a discontinuity in the thermometer table had been observed in the heat capacity of the addenda at about 10° K. The results of the benzoic acid measurements were used as a guide, because of a higher density of data points in this temperature region, to the smoothing of the thermometer table. Essentially the process consisted of varying both the magnitude and the slope of the tabulated resistance-temperature function in such a way as to remove the calculated bumps in the benzoic acid and addenda heat capacities.

Figure 7 is the plot of a difference function between the benzoic acid data reported here and those reported by Ginnings and Furukawa (1953) and by Clay and Staveley (1966). The latter authors claim a $\pm 1\%$ accuracy in their results over the temperature range from 10° K to 80° K using germanium thermometry. The precision of the present measurements is as indicated in the figure. Below about 50° K the precision deteriorates rapidly with decreasing temperature because of the decreasing sensitivity of the platinum thermometer. At 20, 12, 10 and 5° K the precision is of the order of ± 0.5 , ± 2 , ± 5 and $\pm 20\%$ respectively.

3. GdC13.6H20

The crystals were prepared as discussed in the previous chapter. Prior to the loading of the can, the crystals were crushed so that all of a representative sampling would pass on 80 mesh sieve and 50% would pass a 100 mesh sieve (0.18 and 0.15 mm respectively). This procedure was also applied to the other three salts. The quantity of $GdCl_3 \cdot 6H_20$ upon which

Block no.	T _{ave} (⁰ K)	Q	Q/ΔT	ΔR	Q/∆R	R _{ave}
394	6,181	0.385	0.261			
411	6.236	0.073	0.290	-	-	·
412	6.557	0.097	0.328	-	-	· · ·
413	6.901	0.139	0.379	-		-
414	7.402	0.247	0.443		-	-
395	7.478	0.488	0.462		· _	-
415	7.883	0.247	0.559	-	-	· · ·
416	8.300	0.247	0.644	-	-	·
395	8,437	0.543	0.697			-
417	8.638	0.256	0.779			
418	8.978	0.270	0.849			-
397	9.272	0.733	0,970	-	***	-
- 419 - A20	9.201	0.294	1 025			
420	9,000	0.303	1.000	•••		-
398	9 999	0.313	1.139	-	-	
422	10,112	0.339	1,216	· _		-
423	10.401	0.412	1.303	-		_
424	10,702	0.443	1.418	••		
399	10.717	1.092	1.448	0.0023	483.186	0.0224
425	11.049	0.585	1.554	0.0015	382.353	0.0236
426	11.442	0.659	1.656	0.0011	621.698	0.0249
400	11.531	1.498	1.762	0.0030	491.148	0.0251
427	11.890	0.951	1.864	0.0020	463.902	0.0264
401	12.417	1.936	2.163	0.0041	475.676	0.0287
428	12.465	1.353	2.145	0.0029	471.429	0,0289
402	13.434	3.179	2,874	0.0064	495.171	0.0340
403	14.944	5.173	3,405	0.0122	424.016	0.0447
404	10.434	0.258	4.292	0.0155	401.795	0.0536
400	17.304	0.010	0.204	0.0228	3/7.001	0.0778
430	19,000	12 047	6 450	0.0089	009,007 250 542	0.1038
400 A21	21 299	20.904	7 600	0.0330	244 406	0,1000
407	21 724	16 243	7.005	0.0307	341 643	0.1303
408	24,009	23.851	9.755	0.0730	326.726	0.2086
432	24.068	27.582	9,800	0.0845	326.414	0.2111
433	27.016	37.936	12,299	0.1203	315.607	0.3134
434	30.490	59,686	15.436	0.1925	310.057	0.4698
435	34.131	. 64.557	18.889	0,2076	310.968	0.6698
436	37,528	74,786	22.153	0.2324	321,799	0.8937
437	41.131	98.125	25.612	0.3009	326.105	1.1606
438	45.265	131.325	29,573	0.3858	340.397	1.5038
382	49.313	91.551	33.392	0.2564	357.063	1.8665
383	52.535	134.274	36.320	0.3611	371.847	2,1754

Table 4. Experimental values of $Q/\Delta T$ for benzoic acid (joules deg.⁻¹)

Table 4. (Continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Block no.	T _{ave} (^o K)	Q	Q/ΔT	ΔR	Q∕∆R	Rave
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	385	57 120	219 928	/10 33/1	0 5479		2 6/02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	386	62.599	247 270	40.054 AA 95A	0.5479	A23 A80	3 2064
38874.409353.22353.628 0.7241 487.8104.48835781.188301.26758.183 0.5742 524.6735.23435886.516336.06661.503 0.6050 555.4815.82435992.379404.57664.698 0.6935 583.3836.4736099.342522.66068.166 0.8461 617.7287.247361103.266735.57372.2881.1157659.2938.222362119.598962.34777.0811.3582708.5469.461363131.737963.55481.7261.2728757.03510.78354143.260964.63085.7301.2065799.52812.91367157.364539.01290.3450.6293656.52813.523368163.760628.74192.3190.7222870.59114.207369172.7091051.18094.3911.1694398.90515.157370184.3711201.89693.2071.2850935.32816.386371196.7691276.132101.8201.3116972.95817.677440206.8461355.591104.3201.35171002.87918.727372210.3041527.696105.2731.50761013.33019.08441220.7221596.364108.0521.35431144.66323.63374238.2411529.544112.8411.39431168.099<	387	68 234	283 895	49.004	0.5055	A53 QA1	3 8116
357 81.188 301.267 58.183 0.5742 524.673 5.23 358 86.516 336.066 61.503 0.6050 555.481 5.82 359 92.379 404.576 64.698 0.6935 583.383 6.47 360 99.342 522.660 68.166 0.8461 617.728 7.24 361 108.266 735.573 72.283 1.1157 659.293 8.221 362 119.598 962.347 77.081 1.3582 708.546 9.461 363 131.737 963.554 81.726 1.2728 757.035 10.78 364 143.260 964.630 85.730 1.2065 799.528 12.026 365 151.601 480.386 83.431 0.5797 828.680 12.914 367 157.364 539.012 90.345 0.6293 856.528 13.529 368 163.760 628.741 92.319 0.7222 870.591 14.200 369 172.709 1051.180 94.691 1.1694 398.905 15.15 370 184.371 1201.896 98.207 1.2850 935.328 16.396 371 196.769 1276.132 101.620 1.3116 972.958 17.674 440 206.846 1355.591 104.320 1.5576 1013.330 19.085 372 210.304 1527.366 105.273 1.5076 1013.330 19.085	388	74.409	353.223	53.628	0.0234	487 810	4 4864
35886.516336.06661.5030.605055.4815.8235992.379404.57664.6980.6935583.3836.4736099.342522.66068.1660.8461617.7287.24361108.266735.57372.2881.1157659.2938.22362119.598962.34777.0811.3582708.5469.461363131.737963.55481.7261.2728757.03510.78354143.260964.63085.7301.2065799.52812.02365151.601480.38688.4310.5797828.68012.91367157.364539.01290.3450.6293856.52813.52368163.760628.74192.3190.7222870.59114.20369172.7091051.18094.8911.1694398.90515.15370184.3711201.89698.2071.35171002.87918.72372210.3041527.696105.2731.50761013.33019.08441220.7221595.364108.0521.52891044.12620.166373224.5621528.515109.0981.44791055.67820.567442235.2411597.377111.9111.46981036.79921.66374238.3421529.544112.8411.39431164.06323.63445254.8471755.627119.7431.49561173.86124.	357	81.188	301.267	58,183	0 5742	524 673	5 2347
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	358	86.516	336.066	61.508	0.6050	555 481	5 8249
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	359	92.379	404.576	64.698	0.6935	583.383	6 4774
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	360	99.342	522,660	68,166	0.8461	617 728	7.2474
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	361	108,266	735.573	72.288	1,1157	659.293	8.2286
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	362	119.598	962.347	77.081	1.3582	708.546	9,4657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	363	131.737	963.554	81.726	1.2728	757.035	10.7812
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	364	143.260	964.630	85.730	1.2065	799.528	12.0208
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	365	151.601	480.386	88.431	0.5797	828.680	12,9140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	367	157.364	539.012	90.345	0.6293	856.528	13.5253
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	368	163.760	628,741	92.319	0.7222	870.591	14,2071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	369	172,709	1051.180	94.391	1.1694	898,905	15.1533
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	370	184.371	1201.896	98.207	1,2850	935.328	16.3809
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	371	196.769	1276.132	101.620	1.3116	972.958	17.6792
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	440	206.846	1355,591	104.320	1.3517	1002.879	18.7296
441220.7221595.364108.0521.52891044.12620.16373224.5621528.516109.0981.44791055.67820.56442235.2411597.377111.9111.46981086.79921.66374238.3421529.544112.8411.39431168.09921.98443249.9571758.065115.8991.55441131.02523.179376254.4411527.324117.0851.33431144.66323.63445267.3021526.403120.4161.29231181.15224.953377267.3021526.403120.4161.29231181.15224.953446279.2821754.289123.3381.44481214.20926.160378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	372	210.304	1527.696	105.273	1,5076	1013.330	19.0888
373224.5621528.516109.0981.44791055.67820.56442235.2411597.377111.9111.46981086.79921.66374238.3421529.544112.8411.39431168.09921.98443249.9571758.065115.8991.55441131.02523.17376254.4411527.324117.0851.33431144.66323.63445264.8471755.627119.7431.49561173.86124.70377267.3021526.403120.4161.29231181.15224.953446279.2821754.289123.3381.44481214.20926.160378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	441	220.722	1596.364	108.052	1.5289	1044,126	20,1691
442235.2411597.377111.9111.46981086.79921.66374238.3421529.544112.8411.39431168.09921.98443249.9571758.065115.8991.55441131.02523.17376254.4411527.324117.0851.33431144.66323.63445254.8471755.627119.7431.49561173.86124.70377267.3021526.403120.4161.29231181.15224.953446279.2821754.289123.3381.44481214.20926.160378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	373	224,562	1528,516	109,098	1.4479	1055.678	20,5663
374238.3421529.544112.8411.39431168.09921.98443249.9571758.065115.8991.55441131.02523.17376254.4411527.324117.0851.33431144.66323.63445264.8471755.627119.7431.49561173.86124.70377267.3021526.403120.4161.29231181.15224.95446279.2821754.289123.3381.44481214.20926.160378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	442	235.241	1597.377	111.911	1.4698	1086.799	21.6678
443249.9571758.065115.8991.55441131.02523.17376254.4411527.324117.0851.33431144.66323.63445254.8471755.627119.7431.49561173.86124.70377267.3021526.403120.4161.29231181.15224.955446279.2821754.289123.3381.44481214.20926.166378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	374	238.342	1529.544	112.841	1.3943	1168.099	21.9877
376254.4411527.324117.0851.33431144.66323.63445254.8471755.627119.7431.49561173.86124.70377267.3021526.403120.4161.29231181.15224.95446279.2821754.289123.3381.44481214.20926.16378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	443	249.957	1758.065	115,899	1.5544	1131.025	23.1793
445254.8471755.627119.7431.49561173.86124.70377267.3021526.403120.4161.29231181.15224.95446279.2821754.289123.3381.44481214.20926.16378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	376	254,441	1527.324	117.085	1.3343	1144.663	23.6339
377267.3021526.403120.4161.29231181.15224.95446279.2821754.289123.3381.44481214.20926.160378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	445	254.847	1755.627	119.743	1.4956	1173.861	24.7019
446 279.282 1754.289 123.338 1.4448 1214.209 26.16 378 279.803 1526.118 123.762 1.2522 1218.749 26.22 379 292.026 1533.882 126.773 1.2248 1252.353 27.46 447 293.277 1754.935 126.973 1.3981 1255.228 27.58	377	257.302	1526.403	120.416	1.2923	1181.152	24.9525
378279.8031526.118123.7621.25221218.74926.22379292.0261533.882126.7731.22481252.35327.46447293.2771754.935126.9731.39811255.22827.58	446	279,282	1754.289	123.338	1.4448	1214.209	26.1604
379 292.026 1533.882 126.773 1.2248 1252.353 27.46 447 293.277 1754.935 126.973 1.3981 1255.228 27.58	378	279.803	1526.118	123.762	1.2522	1218.749	26.2246
447 293.277 1754,935 126.973 1.3981 1255.228 27.58	379	292.026	1533,882	126.773	1.2248	1252.353	27.4636
	447	293.277	1754,935	126.973	1.3981	1255.228	27,5899
300 303.962 1534.081 129.877 1,1911 1287.953 28.66	38 0	303.962	1534.081	129.877	1,1911	1287,953	28.6593

icoasurements were made was 0.2903 moles.

The experimental values of $Q/\Delta T$ for GdCl₃·6H₂O are listed in Table 5. The smoothed surve heat capacities and the calculated thermodynamic functions are listed in Tables 9 and 10. Table 9 contains only the lattice Figure 7. Difference function relating the present and some previously published benzoic acid heat capacities

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Block no.	T _{ave} (^o K)	Q/ΔΤ
503 $5,1611$ $0,1223$ 504 $6,4354$ $0,2196$ 491 $7,2192$ $0,3118$ 505 $7,5877$ $0,3638$ 492 $8,0691$ $0,4373$ 506 $8,5203$ $0,5162$ 493 $8,7449$ $0,5923$ 507 $9,2995$ $0,6854$ 494 $9,3686$ $0,7079$ 495 $10,0026$ $0,3842$ 508 $10,0285$ 1.0445 509 $10,8519$ 1.0572 498 $11,6022$ 1.2758 510 $11,6395$ 1.2847 511 $12,4822$ 1.5796 499 $12,6487$ 1.6177 512 $13,2476$ 1.8393 500 $13,8997$ 2.1240 513 $14,1407$ 2.2326 501 $15,2973$ 2.7535 514 $15,4277$ 2.8275 515 7.1538 3.7012 524 7.8442 4.0822 516 $18,5006$ 4.5277 525 $9,6798$ 5.1842 517 19.9475 5.3593 526 21.5211 6.4244 518 21.7465 6.5735 527 23.5582 7.9423 520 23.6806 8.0254 522 27.1141 10.89811 522 27.1141 10.89811 522 27.6115 11.3357 530 29.2521 12.8582 541 29.4779 13.609 542	489	4.8706	0.1134
504 $6, 4354$ $0, 2196$ 491 $7, 2192$ $0, 3118$ 505 $7, 5877$ $0, 3633$ 492 $8, 0691$ $0, 4373$ 506 $8, 5203$ $0, 5162$ 493 $8, 7449$ $0, 5923$ 507 $9, 2995$ $0, 6854$ 494 $9, 3686$ $0, 7079$ 495 $10, 0026$ $0, 8842$ 508 $10, 0026$ $0, 3842$ 508 $10, 0001$ 0.9058 497 $10, 7435$ 1.0445 509 $10, 8519$ 1.0572 498 $11, 6022$ 1.2758 510 $11, 6395$ 1.2847 511 $12, 4622$ 1.5796 499 $12, 6487$ 1.6177 499 $12, 6487$ 1.6177 512 $13, 2476$ 1.8393 500 $13, 8997$ 2.1240 513 $14, 1407$ 2.2386 501 $15, 2973$ 2.7535 514 $15, 4297$ 2.8275 515 $17, 1538$ 3.7012 526 $21, 5241$ $6, 4244$ 518 $21, 7465$ $6, 6735$ 527 $23, 5582$ 7.9423 526 $21, 5211$ 6.4244 518 $21, 7465$ $6, 6735$ 527 $23, 6506$ 8.0254 528 $25, 6673$ $9, 5602$ 529 $27, 1141$ $10, 8991$ 522 $27, 1615$ $11, 3357$ 531 $31, 7041$ $15, 3600$ 532 <	503	5.1611	0.1223
4917.21920.3638 505 7.58770.3638 492 8.06910.4373 506 8.52030.5162 493 8.74490.5923 507 9.29950.6854 494 9.36860.7079 495 10.00260.8842 508 10.02851.0445 509 10.85191.0572 498 11.60221.2758 510 11.63951.2847 511 12.46821.5796 499 12.64871.6177 512 13.24761.8393 500 13.89972.1240 513 14.14072.2826 501 15.29732.7535 514 15.42972.8275 515 17.15383.7012 524 17.84424.0622 516 18.58064.5277 525 19.67935.1342 517 19.94755.3593 526 21.52116.4244 518 21.74656.5735 527 23.58827.9423 520 23.68063.0254 523 27.611511.3357 530 29.252112.8582 541 29.477913.0815 531 31.724115.3609 542 32.966615.9822 533 37.715021.7158 544 38.467219.2420 533 37.715021.7158	504	6,4354	0.2196
505 $7,5877$ 0.3638 492 $8,0691$ 0.4373 506 $8,5203$ 0.5162 493 $8,7449$ 0.5923 507 9.2995 0.6854 494 9.3686 0.7079 495 10.0026 0.3842 503 10.0801 0.9068 497 10.7435 1.0445 509 10.8519 1.0572 488 11.6022 1.2768 510 11.6395 1.2847 511 12.4622 1.5796 499 12.6487 1.6177 512 3.2476 1.8393 500 13.8997 2.1240 513 14.1407 2.2386 501 15.2973 2.7535 514 15.4297 2.8275 515 17.1538 3.7012 524 7.8442 4.0822 516 18.5206 4.5277 525 19.6798 5.1342 517 19.9475 5.3593 526 21.5211 6.4244 518 21.7465 6.5735 527 23.6582 7.9428 520 27.6115 11.3357 530 29.2521 12.8582 541 29.4779 13.0815 531 31.7641 15.3669 532 34.6416 18.3519 543 35.4672 19.2420 533 37.7150 21.7158	491	7.2192	0.3118
4928.06910.43/35068.52030.5162 493 8.74490.55235079.29950.6884 494 9.36860.7079 495 10.00260.384250810.00010.9058 497 10.74351.044550910.85191.0572 498 11.60221.275851011.69951.284751112.48221.5796 499 12.64871.617751213.24761.839350013.89972.124051314.14072.236650115.29732.753551517.15383.701252417.84424.082251519.67985.184251719.94755.359352621.52116.424451821.74656.573552723.68068.025452825.40419.424252125.66739.560252927.114110.898152125.65739.560252927.114110.39152125.66739.560252334.641618.351953131.794115.360954232.396615.982253234.647618.351954335.467219.242053337.715021.715854438.4569i22.5322	505	7.5877	0.3638
506 $8, 5203$ $0, 5162$ 493 $8, 7449$ $0, 5923$ 507 $9, 2995$ $0, 6834$ 494 $9, 3886$ $0, 7079$ 495 $10, 0026$ $0, 3842$ 503 $10, 0801$ 0.9058 497 $10, 7435$ $1, 0445$ 509 $10, 8519$ $1, 0572$ 498 $11, 6095$ $1, 2847$ 510 $11, 6995$ $1, 2847$ 511 $12, 6487$ $1, 6177$ 512 $13, 2476$ $1, 8393$ 500 $13, 8997$ $2, 1240$ 513 $14, 1407$ $2, 23265$ 501 $15, 2973$ $2, 7535$ 514 $15, 4297$ $2, 8275$ 515 $17, 1538$ $3, 7012$ 524 $17, 8442$ $4, 0822$ 516 $18, 5806$ $4, 5277$ 525 $19, 6798$ $5, 1842$ 517 $19, 9475$ $5, 3593$ 526 $21, 5211$ $6, 4244$ 518 $21, 7465$ $6, 6735$ 527 $23, 6806$ $8, 0254$ 528 $25, 4041$ $9, 4242$ 521 $25, 6673$ $9, 5602$ 529 $27, 1141$ $10, 3981$ 522 $27, 6115$ $11, 3357$ 530 $29, 2521$ $12, 8582$ 541 $29, 4779$ $13, 0815$ 531 $31, 7641$ $15, 3609$ 543 $35, 4672$ $19, 2420$ 533 $37, 7150$ $21, 7159$	492	8.0691	0.4373
493 $8,7449$ 0.5923 507 9.2995 0.6854 494 9.3686 0.7079 495 10.0026 0.8842 508 10.0026 0.9058 497 10.7435 1.0445 509 10.8519 1.0572 498 11.6022 1.2758 510 11.6395 1.2847 511 12.4822 1.6796 499 12.6487 1.6177 512 13.2476 1.8393 500 13.8997 2.1240 513 14.1407 2.2386 501 15.2973 2.7535 514 15.4297 2.8275 515 17.1538 3.7012 524 17.8442 4.6222 516 18.5606 4.5277 525 19.6798 5.1342 517 19.9475 5.3593 526 21.5211 6.4244 518 21.7465 6.735 527 23.6806 8.0254 528 25.4041 9.4242 521 25.5673 9.5602 522 27.11441 10.8901 523 27.11441 10.8901 524 22.3966 15.9822 531 31.7641 15.3609 542 32.39606 15.9822 541 29.4779 13.0815 531 31.7641 19.2420 543 35.4672 19.2420 533 $37.7150'$ 21.7158	506	8.5203	0.5162
507 $9,2995$ 0.0834 494 9.3686 0.7079 495 10.0026 0.8842 508 10.0801 0.9058 497 10.7435 1.0445 509 10.8519 1.0572 498 11.6022 1.2758 510 11.6395 1.2847 511 12.4422 1.5796 499 12.6487 1.6177 512 13.2476 1.8393 500 13.8997 2.1240 513 14.1407 2.2386 501 15.2973 2.7535 514 15.4297 2.8275 515 17.1538 3.7012 524 17.6442 4.0322 516 18.5806 4.5277 525 19.6798 5.1842 517 19.9475 5.3593 526 21.5211 6.4244 518 21.7465 6.6735 527 23.6806 8.0254 528 25.4041 9.4242 521 25.6673 9.5602 522 27.6115 11.3357 530 29.2521 12.8582 541 29.4779 13.0815 531 31.7641 19.2420 542 32.3966 15.9822 543 35.4672 19.2420 533 37.7150 21.7158	493	8.7449	0.5923
4949,36360,7079 495 10,00260.8842 508 10,74351.0445 509 10,85191.0572 498 11,60221.2758 510 11,63951.2847 511 12,48221.5796 499 12,64871.6177 512 13,24761.8393 500 13,89972.1240 613 14,14072.2386 501 15,29732.7535 514 15,42972.8275 515 17,15383.7012 524 17,84424.0822 516 18,52064.5277 525 19,67985.1842 517 19,94755.3593 526 21,52116.4244 518 21,74656.6735 527 23,68068.0254 528 25,40419.4242 521 25,56739.5602 529 27,114110.8991 522 27,611511.3357 530 29.252112.8582 541 29.477913.0815 531 31,704115.3609 542 32,396615.9822 533 37,71507.158 544 38,4569i22,532	507	9.2995	0.0854
49510.00200.3042 508 10.0010.9058 497 10.74351.0445 509 10.85191.0572 498 11.60221.2758 510 11.69951.2847 511 12.48221.5796 499 12.64871.6177 512 13.24761.8393 500 13.89972.1240 513 14.14072.2386 501 15.29732.7535 514 15.42972.8275 515 17.15383.7012 524 17.84424.0822 516 18.58064.5277 525 19.67985.1342 517 19.67985.1342 517 19.67985.1342 526 21.52116.4244 518 21.74656.5735 527 23.55827.9423 520 23.68068.0254 528 25.40419.4242 521 25.66739.5602 529 27.114110.8901 522 27.611511.3357 530 29.252112.8582 541 29.477913.0815 531 31.784115.3609 542 32.396615.9822 533 37.715021.7158 544 38.4569i22.522	494	9.3686	0.7079
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	495	10.0020	0.0042
497 10.7433 1.0572 509 10.8519 1.0572 498 11.6022 1.2758 510 11.6995 1.2847 511 12.4822 1.5796 499 12.6487 1.6177 512 13.2476 1.8393 500 13.8997 2.1240 513 14.1407 2.2326 501 15.2973 2.7535 514 15.4297 2.8275 515 17.1538 3.7012 524 17.8442 4.0822 516 18.5206 4.5277 525 19.6798 5.1842 517 19.9475 5.3593 526 21.5211 6.4244 518 21.7465 6.6735 527 23.5582 7.9428 520 23.6806 8.0254 522 27.6115 11.3357 530 29.2521 12.8582 541 29.4779 13.0815 531 31.7241 15.3600 542 32.3966 15.9822 533 37.7150 21.7158 533 37.7150 21.7158	508	10.0001	1 0/45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	497 500	10.7455	1.0445
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11 6022	1 2758
510 11.033 11.037 511 12.4422 1.5796 499 12.6487 1.6177 512 13.2476 1.8393 500 13.8897 2.1240 513 14.1407 2.2386 501 15.2973 2.7535 514 15.4297 2.8275 515 17.1538 3.7012 524 17.8442 4.0322 516 18.5606 4.5277 525 19.6798 5.1842 517 19.9475 5.3593 526 21.5211 6.4244 518 21.7465 6.6735 527 23.5882 7.9423 520 23.6806 8.0254 528 25.4041 9.4242 521 25.6673 9.5602 529 27.1141 10.8931 522 27.6115 11.3357 530 29.2521 12.8582 541 29.4779 13.0815 531 31.7841 15.3609 542 32.3966 15.9822 532 34.6416 18.3519 543 35.4672 19.2420 533 37.7150 21.7158	430 510	11 6295	1 2847
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	511	12 4822	1 5796
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	499	2 6487	1.6177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	512	13.2476	1,8393
513 14.1407 2.2386 501 15.2973 2.7535 514 15.4297 2.8275 515 17.1538 3.7012 524 17.8442 4.0622 516 18.5806 4.5277 525 19.6798 5.1842 517 19.9475 5.3593 526 21.5211 6.4244 518 21.7465 6.6735 527 23.6806 8.0254 528 25.4041 9.4242 521 25.6673 9.6602 529 27.1141 10.8901 522 27.6115 11.3357 530 29.2521 12.8582 541 29.4779 13.0815 531 31.7841 15.3609 542 32.3966 15.9822 533 37.7150 21.7158 544 $38.4569i$ 22.5322	500	13,8997	2.1240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	513	14.1407	2.2386
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	501	15.2973	2.7535
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	514	15.4297	2.8275
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	515	17.1538	3.7012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	524	17.8442	4.0822
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	516	18.5806	4.5277
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	525	19,6798	5.1842
526 21.5211 6.4244 518 21.7465 6.6735 527 23.5582 7.9428 520 23.6806 8.0254 528 25.4041 9.4242 521 25.5673 9.5602 529 27.1141 10.8981 522 27.6115 11.3357 530 29.2521 12.8582 541 29.4779 13.0815 531 31.7841 15.3609 542 32.3966 15.9822 532 34.6416 18.3519 543 35.4672 19.2420 533 37.7150 21.7158 544 38.45695 22.5322	517	19.9475	5.3593
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	526	21.5211	6.4244
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	518	21.7465	6.6735
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	527	23.5582 ,	7.9428
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	520	23,6806	8.0254
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	528	· 25.4041	9,4242
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	521	25.56/3	9.5602
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	529	27,1141	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	524	2/.0115	11,000/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00U c 41	20 4770	12.0004
531 51.7641 15.3609 542 32.3966 15.9822 532 34.6416 18.3519 543 35.4672 19.2420 533 37.7150 21.7158 544 38.4559 22.5322	041 E 01	21 70/1	15,0010
532 34,6416 18.3519 543 35.4672 19.2420 533 37.7150 21.7158 544 38.4559 22.5322	501 5/12	32 2066	15 0822
543 35.4672 19.2420 533 37.7150 21.7158 544 38.4559 22.5322	し944 につう し 1944 につう 日本 1944 につう 日本 1944 につう し 1944 につう し 1944 につう 日本 1944 につう 日本 1944 につう 日本 1944 につう 日本 1944 につう	32,3500 32,6716	18, 3510
533 37.7150 21.7158 544 38 4559 22.5322	50A 5A2	25 4672	19 2720
544 38 4559 22 5322	595	37 7150	21.7158
	535 5AA	38 4559	22 5322

Table 5. Experimental values of $Q/\Delta T$ for $GdCl_3 \cdot 6H_2O$ (joules deg.⁻¹)

Table 5. (Continued)

Block no.	T _{ave} (^o K)	Q/ΔΤ
534	40.8577	25.2385
545	41.4364	25.8930
536	43.9020	28.7337
548 -	44.6551	29.5970
537	46.7703	32.0677
547	48.7110	34.3273
538 550	49.7717	35.5940
539 559	53.1580	39.4475
548	53.4614	39.7969
551	56.7442	43.4965
560	58.9624	45.9727
552	61.4050	48.6940
561	65.1650	52.6994
553	66.3525	53.9473
562	71.7433	59.2648
554	71.9178	59.4583
563 476 564	82.4385	69.2645 72.5845
477	92.4151	77.5617
565	96.2634	80.4306
478	102.0440	84.550 2
465	109.7291	89.7289
479	111.6564	91.0135
480	121.3601	97.0190
485 481 467	131.1454	97.3694 102.6147 102.8205
462 468	141.4130	103.8309
483	152.3276	113.2878
469	155.0613	114.5585
484	163.6530	118.3142
470	166.4227	119.5520
485 471 497	175.5392 178.1720	123.2886 124.3638
407 473 A49	107.0172	129.2781
474 450	205.6173	134.0602
452	220. 5283	139.0558

Block no.	T _{ave} (^o K)	Q/ΔT
458 453 459 454 460 455 461 456	229.7831 233.1807 244.3041 247.3823 258.9868 261.7669 273.2742	141.8882 142.8525 146.1097 146.9542 150.1583 150.8106 154.0647
456 462 464	275.7859 287.2051 301.3355	154.4482 157.6248 161.0463

Table 5. (Continued)

contributions. Table 10 contains the contributions from the lattice and from an approximation to the crystal field split ground state of the Gd^{+3} ion in this crystal. The topic will be discussed in another section. Figure 8 shows the smoothed curve heat capacity. To within the scale of the figure, the shape of the curve is characteristic of the four samples studied.

4. TbC1₃-6H₂0

In order to minimize the uncertainty in the determination of the magnetic contribution to the heat capacity, it is desirable to keep the number of moles of sample constant over a series of samples. The quantity of $\text{TbCl}_3 \cdot \text{6H}_20$ used matched that of the previous sample to within less than 10^{-4} moles.

A standard practice during the heat capacity measurements of the hydrated samples was the examination of the temperature region above 200° K for a "water bump" such as that observed by Gerstein (1960). This

Figure 8. Smoothed curve heat capacity of $GdC1_3 \cdot 6H_20$

procedure served as a check on the major constituent analysis, that is, on the concentration of the waters of hydration. It has been found that the heat capacity is sensitive to quantities of excess water that constitute several hundredths of a percent of the sample weight.

Table 6 lists the experimental values of $Q/\Delta T$ for $TbCl_3 \cdot 6H_2O$. Table 11 contains the smoothed curve heat capacities and the thermodynamic functions.

5. $HoC1_3 \cdot 6H_20$

The quantity of this sample used in the heat capacity measurements was 0.2910 moles.

Tables 7 and 12 list the experimental and the smoothed curve values for Q/ Δ T and C_p respectively. In the temperature region below 50°K there was generally good agreement between these results and those of Pfeffer (1961a). Figure 9 shows the heat capacity data below 20°K. Some deviation between the present values and those of Pfeffer are evident below 10°K. In particular, the difference is of the order of my experimental error at 6° K. There are several reasons to expect Pfeffer's data to be the more reliable in this temperature region. First, the heat capacity below 100°K is quite insensitive to the occluded water in his crystals. Second, while the sensitivity of a platinum thermometer is relatively low at temperatures of the order of 10°K, that of a carbon thermometer such as used by Pfeffer, is relatively high. Thus his Δ T values below 10°K are probably more accurate than mine.

Block no.	Г _{ave} (⁰ К)	Q/ΔT
630 673 631 674 675 632 676 633 677 609 610 611 678 612 635 613 679 614	4.3883 4.5177 4.6520 4.7088 4.9770 5.0139 5.4244 5.7112 6.0942 6.4422 6.5671 6.9011 7.0129 7.3910 7.8838 8.0897 8.2041 8.8508	$\begin{array}{c} 0.6122^{a}\\ 0.5451^{a}\\ 0.5592\\ 0.6792\\ 0.7452\\ 0.7152\\ 0.7265\\ 0.7194\\ 0.7104\\ -1.2833^{a}\\ 0.8481\\ 0.7723^{a}\\ 0.7841\\ 0.8511\\ 0.8631\\ 0.9129\\ 0.9887\end{array}$
	9.2278 9.5019 9.6461 10.5219 10.5547 10.9372 11.5530 11.6947 12.5472 12.9429 13.6932 14.5570 15.1828 16.6378 16.6709 13.2692 18.8437 19.9433 20.2951 21.5709 22.2187 23.4211	$\begin{array}{c} 1.0767\\ 1.1565\\ 1.1918\\ 1.3560\\ 1.3746\\ 1.4489\\ 1.6428\\ 1.6652\\ 1.9663\\ 2.1403\\ 2.4681\\ 2.8737\\ 3.1915\\ 3.9842\\ 4.0035\\ 4.9608\\ 5.3302\\ 6.0713\\ 6.3115\\ 7.2477\\ 7.7363\\ 8.7147\end{array}$

3

Table 6. Experimental values of $Q/\Delta T$ for TbCl₃·6H₂O (joules deg.⁻¹)

^aRejected.

Table 6. (Continued)

	Block no.	T _{ave} (^o K)	Q/ΔΤ
	. 647	24,5825	9.6637
	627	25.6125	10.5687
	648	27.4799	12.2479
	628	28,1598	12.8857
	649	30.9101	15,5942
	655	32.8676	17.6212
	650	34.8314	19.7508
	656	35.7290	20,7336
	651	39,1721	24,5867
	652	43.6623	29,7420
	658	44.5986	30,8339
	653	48.0231	34.8444
	659	49.6577	36,7583
	666	52.8253	40,4056
	661	55.1377	43,1653
	667	57.8555	46.1173
	662	61.1232	49,7785
	668	62,5501	51,3501
	669	67.6077	56,6765
	663	68.0649	57,1102
	670	73,2341	62.1820
	664	75.2686	64.1295
•	671	79.1144	67,7859
	564	80.5355	69.0864
	529	80,7539	69.2882
	565	87.0058	74,8223
	590	88.3203	75.9187
	566	93,4708	79.9155
	592	95,4771	82,1441
	567	100.2223	84.8151
	593	105.1677	88,2835
	568	107,7205	89.9573
	594	115.7554	95,1219
	569	116.1796	95.3627
	570	125.4167	100.8557
	595	127.6975	102.0741
	571	135.4274	106,3225
	597	138.8457	108.0598
	572	146.3326	111.7940
	598	150.1279	113.6034
	574	157.4741	116.8535
	599	161.6456	118.7269
	575	168.7498	121.5100
	600	173.3766	123,5536

Tahla 6	(Continued)
lapie v.	(concinaca)

	Block no.	T _{ave} (^o K)	Q/ΔT
	577 601 578 602 579 603 580 604 581 683 604 581 683 606 582 684 607 583 685 585 685 585 686 586 587	180.2457 185.3618 191.3097 196.9456 202.9331 209.4063 215.1342 223.9135 228.8054 234.8792 239.0796 243.8414 249.8458 253.9391 258.4392 264.4146 272.5034 278.6248 286.4124 300.1072	126.0710 128.1064 130.3341 132.1666 134.0711 136.1560 138.0117 140.6145 141.8919 143.9372 145.3078 146.1432 148.1163 149.3893 150.3124 152.0079 153.9804 155.7130 157.5419 160.9753
Table 7.	Experimenta	l values of Q/ΔT for HoCl ₃ ·6H ₂	0 (joules deg. ⁻¹)
	Block no.	т _{ауэ} (⁰ К)	Q/ΔT
	772 773 774 752 775 753 754 754 776 730 731	4.5107 4.6683 5.0103 5.2824 5.3542 5.4457 5.5341 5.9582 6.0607 6.1693	2.1349 ^a 1.1473 1.2767 0.3409 ^a 1.5055 0.9498 1.1378 1.6103 0.3634 ^a 1.4577

^aRejected,

.

Table 7. (Continued)

· · · ·	Block no.	T _{ave} (^o K)	Q/ΔΤ	
	755	6.1699	1.5438	
	732	6.4803	1.8093	
	1//	6.6273	1.6988	
	/33	6.9136	1.7501	
	750	0.9501	1.8068	
	770	7,3/45	1.9114	
	754 75 7	7.4443	1.6355	
	735	2 0873	2 0769	
	779	8 2666	2 1355	
	736	8,8752	2,2636	
	758	9,1845	2.3522	
	780	9.3560	2.2457	
	737	9,7784	2.5468	
	781	10.6914	2.5764	
	759	10.7607	2,6243	
	738	10.9234	2.6284	
	739	12.2514	2.9668	
	/60	12.6179	3.0731	
	740	13.6957	3.4294	
	701	14.4140	3.0990	
	761	10,1001	4.0280	
	703	15.7732	4.2907	
	764	17 0633	4.7144 A 2902	
	743	18 2946	5.5248	
	765	18.6619	5.7206	
	744	20.0629	6.5514	
	766	20,9661	7,1277	
	745	22.1052	7.8940	
	767	23.7064	9.0760	
	746	24,5427	9.7172	
	768	25,2211	11.0950	
	747	27.2493	11.9761	
	748	30.0287	14.5301	
	783	31.3070	15.7760	
	770	31.6684	15.1294	
	749	32.0382	17.1221	
	709	34,0231	18,5051	
	785	30,1039	22 0620	
	795	an 2611	25 2701	
	786	41 0939	26 3335	
	796	42.9470.	28,4250	

(Continued) ٠ 1 Table

31.4122 32.5520 37.2944 38.6933 45.7593 45.7593 45.7593 55.2172 56.7457 55.2172 57.9780 56.7457 55.27597 56.7457 55.27597 56.7457 56.7457 56.7457 56.7457 56.7457 57.9780 56.7554 57.9780 56.7554 57.9780 57.9780 56.7553 57.9780 57.7591 57.7530 57.7530 57.7531 57.7513 57.7514 57.7514 57.7514 57.7514 57.7514 57.7514 57.7514 57.7514 57.7514 57.7514 57.7514 57.7 42.7575 44.3381 47.1855 Q/AT

 45.5282

 50.6098

 51.8367

 51.8367

 51.8367

 51.8367

 51.8367

 51.8367

 51.8367

 51.8367

 51.8367

 51.8367

 52.994

 51.8367

 52.994

 53.0247

 54.9377

 55.8030

 75.6161

 76.9023

 78.8030

 85.4625

 88.5134

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 95.8739

 172.8392

 182.5665

 154.5308

 157.8392

 157.8392

 157.8392

 157.8392

 157.8392

 157.8392

 157.8393

 157.8393

 .6003 .7911 .7911. $\Gamma_{ave}(^{0}k)$.8547 2224 **____** 20 718 720 722 700 700 702 694 717 695 696 719 697 83 24 25 Block

Block no.	T _{ave} (^o K)	Q/AT	
 704	254.8687	148.8181	
726	265.6401	151.6689	
705	272.6963	153.4328	
72 7	282.1611	155.8262	
706	291.0903	158.1034	
728	298.2510	159.8611	
707	305.8774	161.7753	

Table 7. (Continued)

6. $LuC1_{3} \cdot 6H_{2}0$

Tables 8 and 13 list the experimental and smoothed curve results for this salt. The sample was changed several times because of known or suspected contamination. Only the third sample contributed to the results presented here. This sample consisted of 0.2905 moles of $LuCl_3 \cdot 6H_20$.

Several unusual difficulties were encountered during the measurement of the heat capacity of this salt. The one involving the potentiometer has been discussed in an earlier section. In addition to, but independent of this problem, the heat capacity displayed anomalous behavior in the temperature region above 275° K. The anomaly took the form of a sharply defined bump in the heat capacity curve, extending from about 279° K to beyond 285° K. The heat capacity in the region 240° K to 300° K is shown in Figure 10.

Initial measurements with the third sample, involving ΔT 's large compared to the temperature range of the anomaly, suggested the cause to be excess water. In accordance with the procedure developed by Gerstein (1960) for handling such a situation, some water was pumped from the Figure 9. Heat capacity of $HoC1_3 \cdot 6H_20$ in the temperature region below $20^{\circ}K$

Figure 10. Heat capacity of $LuCl_3 \cdot 6H_20$ in the temperature region of the anomaly

F

crystals, in the can, in an attempt to reduce the size of the bump. Gerstein found that he was able to remove 100 milligrams of water and lower the enthalpy under his "water bump" by about 30 joules. The removal of 25 milligrams of material in the present case caused no significant change in the heat capacity. The data points in Figure 10 designated 3-A were measured before, and those designated 3-B were measured after the pumping.

Further heat capacity measurements, made in order to resolve the shape of the bump, plus chemical analysis of the sample (previously mentioned), established that the bump was most likely not due to occluded water. Additional steps taken to find the cause will be discussed in a later section.

The enthalpy under the bump was estimated to be 13.8 ± 1 joules. This value was obtained from the data of one heating period that covered temperatures ranging from 4 degrees below to 8 degrees above the bump. The area under a smooth curve, extrapolated through the region from the lower temperature data, was subtracted from the measured Q-value of this single heating period. The uncertainty in the enthalpy is due to the difficulty involved in making the extrapolation accurately. The entropy involved in the anomaly is less than 0.3 joules mole⁻¹deg.⁻¹.

B. Magnetic Heat Capacities

The rare earth ions in the Tb and Ho salts studied in this work have ground electronic states which are non-degenerate in the crystalline electric fields within which the ions are situated. The nominally ${}^{2S+1}L_J$ ground states may split into as many as (2J+1) singly degenerate levels.

Block no.	T _{ave} (^o K)	Q/ΔΤ
885 886 887 888 890 890 891 892 893 893 894 895 896 895 896 897 898 899 901 902	5.2159 5.4621 5.7276 6.0198 6.2143 6.4708 6.7769 7.0986 7.4323 7.7509 8.1213 8.5721 9.1278 9.8174 10.6360 11.5802 12.6872	0.0845 0.0709 0.0674 0.1402 0.1254 0.2045 0.2237 0.2288 0.3094 0.3660 0.4262 0.5109 0.6320 0.7933 0.9676 1.1792 1.5589
903	14.0378	2.0738
905	14.5514	2.2847
906	15.9493	2.8979
907	17.6101	3.7321
908	19.5887	4.8460
909	21.7785	6.2456
910	24.1671	7.9669
911	26.6988	9.9795
913	29.3487	12.2908
914	32.2585	15.0579
915	35.5043	18.3880
916	39.0331	22.1330
917	42.8285	26.2791
918	46.9228	30.8892
927	47.7921	-31.8583
923	52.9093	37.6225
929	58.4066	43.6930
930	64.8185	50.5630
931	72.1736	57.8177
932	80.1665	65.2855
935	84.5073	69.1958
933	88.7551	72.7243
936	92.3206	75.5388
937	101.0256	81.8635
864	106.4452	85.6115
938	108.0245	86.6437
865	117.4987	92.7289

Table 8. Experimental values of Q/ Δ T for LuCl₃·6H₂O (joules deg.⁻¹)

Table 8. (Continued)

153.3348
153.3348
154.0024
155.0230
155.4815
155.4815
155.4815
155.5005
155.5005 56.1271 60.4399 61.0553 62.5796 153.9461. 155.4485 55,6250 155.4063 57.4097 154.9635 .4603 1406 98.8153 501 Q/∆T 55. 55.1 07 278.4004 245.7767 259.2860 259.2860 259.2860 259.2860 259.2860 259.2860 259.3291 277.3411 277.3411 277.354 271.3411 277.319 277.35178 277.35178 277.3519 277.3519 277.1211 279.6594 279.6594 279.6594 279.6594 279.6594 279.6594 279.6594 279.6594 279.6594 284.5935 285.0056 285.8401 127.7983 144.2778 168.3120 193.7499 283.0100 233.6680 $T_{ave}^{(0K)}$ 332 .3662 . 6992 5701 281.0371 281.5701 284,4556 281.7 282.3 282.6 no 866 867 868 868 872 872 845 941 855 853 948 860 950 839 846 874 940 854 942 856 943 272 849 9/52 946 859 949 380 361 951 840 873 879 853 Block PVC 5 5 8 $\overline{\tilde{\circ}}$ 30 52 2

85

.

•	Block no.	Т _{аve} (^о К)	Ω/ΔΤ	
	862	287.2227	154.6843	
	952	288.3303	156.1404	
	843	288.4087	155.7385	
	850	288.8579	156.2715	
	953	292.5088	157.0636	
	.881	294.3296	157.5647	
	882	296.0745	157.6556	
	883	298,7080	157.9299	

Table 9. Lattice contribution to the thermodynamic functions of $GdCl_3 \cdot 6H_20$ for T $\leq 14^{0}K$ (joules mole deg. mole wt. = 371.69 gm.)

т(^о к)	CLATTICE	s <mark>o</mark> T	(II ⁰ -H ⁰)/T	-(F ⁰ _T -H ⁰ ₀)/T
1.000	0.001	0.000	0.000	0.000
2.000	0.012	0.004	0.003	0.001
3.000	0.040	0.013	0,010	0.003
4.000	0.095	0.032	0.024	0,008
5.000	0.210	0.065	0;049	0.016
6.000	0.410	0.120	0.092	0.028
7.000	0,600	0.201	0.154	0.047
8.000	1.100	0,317	0.244	0.073
9.000	1.620	0.475	0.367	0.108
10.000	2.255	0.578	0.523	0,155
11,000	2,990	0.927	0.713	0.213
12.000	3.835	1.222	0.937	0.285
13.000	4,795	1.566	1.196	0,370
14.000	5,360	1,959	1.490	0,469

т(^о к)	с _р	s <mark>o</mark> T	(H ^o _T -H ^o ₀)/T	-(F ⁰ -H ⁰ ₀)/T
0.040	0.007	0.001	0.001	0.000
0.080	0.748	0.144	0.123	0.021
0.120	2.532	0.776	0.621	0.154
0.160	4.122	1.733	1.308	0.426
0.200	5.206	2.779	1.987	0.791
0.240	5.843	3.790	2.582	1.208
0.280	6.134	4.717	3.073	1.644
0.320	6.170	5.541	3.460	2.081
0.360	6.031	6.261	3.754	2.506
0.400	5.780	6.884	3.970	2.914
0.440	5.466	7.420	4.121	3.299
0.480	5.124	7.881	4.219	3.663
0.520	4.//5	8.2/8	4.275	4.003
0.560	4.434	8.619	4.298	4.321
0.600	4.110	8.914	4.297	4.617
0.600	4.110	8.914	4.297	4.017
0.800	2.812	9.905	4.0/0	5.829
1.000	1.980	10.437	3.734	0./UJ 7.0EA
1.400	1.100	10.946	3.092	7.854
1.800	0.720	11.1/2	2.003	8.009
2.200	0.460	11.290	2.230	9.034
2.000	0.300	11.301	1.957	9.404
2 400	0.250	11.407	1.739	9.000
2 200	0.230	11.441	1.000	10 0/1
1 200	0.240	11.400	1 314	10.041
4.200	0.240	11.452	1.014	10.170
5 000	0.200	11 528	1 146	10.200
6 000	0.300	11.607	1.140	10 588
7 000	0.740	11 699	0.959	10,74 0
8,000	1,140	11.823	0.956	10.867
9,000	1,660	11,986	1.004	10.982
10,000	2,280	12,191	1.099	11.092
11.000	3.010	12.443	1.239	11.203
12.000	3.840	12.739	1.420	11.319
13.000	4.800	13.084	1.643	11.441
14.000	5.860	13.477	1.905	11.572
15,000	7.050	13.922	2.208	11.714
16.000	8.310	14.416	2.550	11.867
17.000	9.640	14.960	2.928	12.033
18.000	11.040	15.551	3,340	12.211
19.000	12.520	16.188	3.784	12.404
20.000	14.040	16.868	4.258	12,610

Table 10. Lattice plus magnetic contributions to the thermodynamic functions of $GdCl_3 \cdot 6H_20$ (joules mole-ldeg.-l, mole wt. = 371.69 gm.)

⁰)/Т	2228 2288 22888 22888 228888 22888888 288888888
- (F ⁰ -ŀ	71. 15. 16. 16. 16. 16. 16. 16. 16. 16
(н <mark>о</mark> -н <mark>0</mark>)/Т	5.291 6.427 6.427 7.655 8.967 10.355 11.809 13.326 96.097 11.809 13.326 96.097 11.72 88.222 96.097 111.172 103.742 113.326 96.097 111.172 103.742 111.172 103.742 111.172 103.742 111.172 113.2289 111.172 111.172 111.172 112.435 111.172 111.172 112.7435 111.172 111.172 112.7435 111.172 111.172 112.7435 111.172 111.172 112.7435 111.172 112.7435 111.172 112.7435 111.172 112.7435 111.172 112.7435 111.172 112.7435 111.172 112.7435 111.172 112.7435 113.745 111.172 112.7435 113.745 111.172 112.745 113.745 111.172 112.745 113.745 113.745 113.7555 113.7555 113.7555 113.7555 113.75555 113.7555555 113.755555555555555555555555555555555555
S ⁰	18.354 19.998 21.789 23.716 23.716 23.716 23.716 30.216 31.505 32.593 331.66 332.966 331.080 332.966 333.966 331.080 332.900 331.080 332.900 333.900 334.900 335.000 336.000 3370.064 339.060
c ^b	17.220 27.890 27.890 31.690 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.580 35.590 36.640 117.770 117.750 117.750 117.750 117.750 117.750 117.750 126.970 232.480 232.480 253.940 253.940 253.940 253.940 253.940 266.970 332.410 332.410 332.410 332.410 332.410 332.410 347.900 355.100
(₉)л	222.000 24.000 330.000 332.000 332.000 332.000 45.000 55.000 55.000 55.000 55.000 55.000 55.000 55.000 55.000 55.000 170.000 170.000 170.000 170.000 170.000 2200.000 20000 2000 2000 2000000

Table 10. (Continued)

88 38

.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	т(⁰ К)	с _р	s ^o T	(H ^o _T -H ^o ₀)/T	-(F ^o _T -H ^o ₀)/T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000	0.200	0.140	0.087	0.053
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000	0.500	0.348	0.202	0.147
4.000 2.180 1.171 0.756 0.415 5.000 2.350 1.680 1.061 0.619 6.000 2.320 2.111 1.278 0.833 7.000 2.400 2.471 1.430 1.041 8.000 2.640 2.806 1.565 1.241 9.000 3.040 3.139 1.706 1.434 10.000 3.570 3.486 1.864 1.621 11.000 4.250 3.857 2.049 1.807 12.000 5.070 4.260 2.266 1.995 13.000 6.130 4.707 2.521 2.186 14.000 7.360 5.206 2.822 2.383 15.000 8.700 5.759 3.169 2.590	3.000	1.400	0.633	0.378	0.255
5.000 2.350 1.680 1.061 0.619 6.000 2.320 2.111 1.278 0.833 7.000 2.400 2.471 1.430 1.041 8.000 2.640 2.806 1.565 1.241 9.000 3.040 3.139 1.706 1.434 10.000 3.570 3.486 1.864 1.621 11.000 4.250 3.857 2.049 1.807 12.000 5.070 4.260 2.266 1.995 13.000 6.130 4.707 2.521 2.186 14.000 7.360 5.206 2.822 2.383 15.000 8.700 5.759 3.169 2.590	4.000	2.180	1.171	0.756	0.415
6.000 2.320 2.111 1.278 0.833 7.000 2.400 2.471 1.430 1.041 8.000 2.640 2.806 1.565 1.241 9.000 3.040 3.139 1.706 1.434 10.000 3.570 3.486 1.864 1.621 11.000 4.250 3.857 2.049 1.807 12.000 5.070 4.260 2.266 1.995 13.000 6.130 4.707 2.521 2.186 14.000 7.360 5.206 2.822 2.383 15.000 8.700 5.759 3.169 2.590	5.000	2.350	1.680	1.061	0.619
7.000 2.400 2.471 1.430 1.041 8.000 2.640 2.806 1.565 1.241 9.000 3.040 3.139 1.706 1.434 10.000 3.570 3.486 1.864 1.621 11.000 4.250 3.857 2.049 1.807 12.000 5.070 4.260 2.266 1.995 13.000 6.130 4.707 2.521 2.186 14.000 7.360 5.206 2.822 2.383 15.000 8.700 5.759 3.169 2.590	6.000	2.320	2.111	1.2/8	0.833
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.000	2.400	2.4/1	1.430	1.041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.000	2.640	2.806	1.565	1.241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.000	3.040	3.139	1.700	1.434
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.000	3.370	ン、400 ン 05 7	2.040	1.021
12.000 5.070 4.200 2.200 1.355 13.000 6.130 4.707 2.521 2.186 14.000 7.360 5.206 2.822 2.383 15.000 8.700 5.759 3.169 2.590	12,000	4.200	3.007	2.049	1.007
13.000 0.130 4.707 2.321 2.100 14.000 7.360 5.206 2.822 2.383 15.000 8.700 5.759 3.169 2.590		5.070	4.200	2.200	2 186
15.000 8.700 5.759 3.169 2.590	14 000	7 360	5 206	2.321	2.100
	15,000	8 700	5.200	3 169	2.505
16 000 10 120 6 365 3 559 2 806	16,000	10 120	6 365	3 559	2 806
17,000 11,600 7,023 3,988 3,035	17,000	11,600	7.023	3,988	3.035
18,000 13,170 7,730 4,454 3,276	18,000	13,170	7,730	4,454	3,276
19.000 14.810 8.486 4.955 3.530	19.000	14.810	8,486	4,956	3.530
20.000 16.490 9.288 5.490 3.798	20.000	16.490	9.288	5.490	3.798
22,000 20,030 11.025 6.651 4.374	22,000	20.030	11.025	6.651	4.374
24.000 23.760 12.927 7.921 5.007	24.000	23.760	12.927	7.921	5.007
26.000 27.530 14.978 9.284 5.694	26.000	27.530	14.978	9.284	5.694
28.000 31.450 17.160 10.725 6.434	28.000	31.450	17.160	10.725	6.434
30.000 35.500 19.465 12.239 7.226	30.000	35.500	19.465	12.239	7.226
32.000 39.570 21.885 13.819 8.066	32.000	39.570	21.885	13.819	8.066
34.000 34.660 24.318 15.366 8.952	34.000	34.660	24.318	15.366	8.952
36.000 47.730 26.841 16.968 9.873	36.000	47.730	26.841	16.968	9.873
38.000 51.860 29.533 18.696 10.837	38.000	51.860	29.533	18.696	10.837
40,000 56,000 32,298 20,458 11.840	40.000	56.000	32.298	20.458	11.840
45.000 66.290 39.489 24.979 14.509	45,000	66.290 76 F00	39.489	24.979	14.509
50.000 /b.580 4/.004 29.024 1/.301	50.000	70.580	4/.004	29.024	17.301
55.000 85.050 54.782 34.357 20.420	55.000	85.050	54.782	34.357	20.420
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		105 200	70 792	12 9/6	25.019
70,000 111,190 79,012 43.040 20.300 20.	70.000	105.200	79 012	18 551	20.358
75 000 122 700 87 084 53 216 33 867	75.000	122 700	87 084	53 216	33 867
20 000 131 360 95 283 57 833 37 450	80.000	131 360	07.004	57 833	37 450
90 000 147 470 111 703 66 915 44 788	90.000	147 470	111 703	66 915	44 788
100 000 162 050 128 005 75 709 52 296	100 000	162 050	128,005	75 709	52.296
110 000 175,810 144,101 84,189 59,912	110 000	175,810	144,101	84,189	59,912
120,000 189,080 159,971 92,380 67,591	120.000	189,080	159.971	92,380	67.591
130.000 201.780 175.611 100.311 75.300	130.000	201.780	175.611	100.311	75.300

Table 11. Thermodynamic functions of $\text{TbCl}_3 \cdot 6\text{H}_20$ (joules mole⁻¹deg.⁻¹, mole wt. = 373.36 gm.)

Table 11. (Continued)

		1		
Т(⁰ К)	С _р	sr	(H ^o _T -H ^o ₀)/T	-(F ⁰ _T -H ⁰ ₀)/T
140.000	213,900	191.012	107.995	83.016
150.000	225.510	206.169	115.447	90.723
160.000	236.630	221.081	122.675	98.405
170.000	247.280	235.747	129.693	106.054
180.000	257.530	250.173	136.512	113.661
190.000	267.380	264.363	143.142	121.220
200.000	276.620	278.315	149.588	128.727
210.000	285.410	292.026	155.848	136.178
220.000	293.900	305.500	161.931	143.569
230.000	302.180	318.747	167.849	150.898
240.000	310.320	331.780	173.616	158.164
250.000	318.340	344.611	179.245	165.366
260.000	326.210	357.250	184.747	172.503
270.000	333.850	369.706	190.129	179.577
273.157	336.230	373.570	191.790	181.74 0
280.000	341.320	381.982	195.396	186.587
290.000	348.650	394.087	200.554	193.534
298.150	354.490	- 403.840	204,690	199.150
300.000	355.760	406.027	205.609	200.418

Table 12. Thermodynamic functions of $HoCl_3 \cdot 6H_20$ (joules mole⁻¹deg.⁻¹, mole wt. = 379.37 gm.)

Т(⁰ К)	с _р	s <mark>o</mark> T	(H ^o _T -H ^o ₀)/T	-(F ⁰ T-H ⁰ 0)/T
1.000	0.120	0.087	0.053	0.033
2.000	0.540	0.258	0.162	0.097
3.000	2.290	0.785	0.561	0.225
4.000	3.950	1.696	1.222	0.474
5.000	4.800	2.674	1.857	0.817
6.000	5.480	3.612	2.407	1.205
7.000	6.100	4.504	2.891	1.613
8.000	6,670	5.356	3.328	2.028
9.000	7.220	6.174	3.730	2.444
10.000	7.770	6.963	4.106	2.856
11.000	8.330	7.730	4.465	3.265
12.000	8.930	8.480	4.812	3.668
13.000	9.680	9.223	5.156	4.067
14.000	10.570	9.972	5.511	4.462

т(^о к)	С _р	s <mark>o</mark> T	(H ^o _T -H ^o ₀)/T	-(F ⁰ _T -H ⁰ ₀)/T
15.000	11.560	10.735	5.881	4.854
16.000	12.650	11.516	6.269	5.246
17.000	13.840	12.318	6.679	5.639
18.000	15.100	13.144	7.112	6.032
19.000	16.430	13.996	7.567	6.429
20.000	17.840	14.874	8.044	6.829
22.000	20.840	16.712	9.069	7.643
24.000	24.090	18.663	10.184	8.480
26.000	27.500	20.725	11.384	9.342
28.000	31.070	22.893	12.661	10.231
30.000	34.770	25.162	14.011	11.151
32.000	38.590	27.527	15.427	12.100
34.000	42.510	29,984	16.905	13.079
36.000	46.480	32,526	18.437	14.088
38.000	50.450	35.145	20.018	15.127
40.000	54.420	37.834	21.639	16.195
45.000	64.400	44.819	25.835	18,984
50.000	74.320	52.119	30.189	21.931
55.000	84.070	57,001	34.045	20.010
60.000	93,000 102,700	07.380	39.10Z	20.224
	102.700	73.243 03 102	43.707	31.000
75.000	120 100	01 171	F2 7/6	39.125
20.000	120.100	91.171	57 218	A1 972
90.000 90.000	144 220	115 246	66 024	49 222
100 000	158 820	131 208	74 584	56.624
	172,460	146.987	82.864	64.123
120 000	185,780	162.568	90,889	71.679
130.000	198,470	177.945	98,681	79.263
140.000	210.640	193.100	106.246	86.854
150.000	222.300	208.034	113.598	94.437
160.000	233.340	222.737	120.740	101.997
170.000	243.870	237.201	127.675	109.526
180.000	254.010	251.428	134.413	117.015
190.000	263.840	265.426	140.967	124.459
200.000	273.280	279.200	147.348	131.852
210.000	282.230	292.752	153.559	139.192
220.000	290.800	306.079	159.603	146.476
230.000	299.210	319.191	165.490	153.701
240.000	307.410	332.099	171.234	160.866
250.000	315.390	344.811	176.841	167.970
260.000	323.070	357.331	182.318	175.012
270.000	330.620	369.665	187.671	181.994

Table 12. (Continued)

Table 12. (Continued)

т(⁰ К)	с _р	sr	(H ^o _T -H ^o ₀)/T	-(F ⁰ _T -H ⁰ ₀)/T
273.150	332.970	373.490	189.320	184.150
280.000	338.080	381.823	192.909	188.914
290.000	345.500	393.816	198.043	195.773
298.150	351.600	403.510	202.140	201.300
300.000	353.000	405.655	203.083	202.572

Table 13.	Thermodynamic functions	of LuCl ₂ ·6H ₂ O	(joules mole deg. ',
	mole wt. = 389.41 gm.)	, J Z	

τ(⁰ κ)	•	с _р	s <mark>o</mark> T	(H ^o -H ^o)/T	-(F ⁰ _T -H ⁰ ₀)/T
1.000		0.001	- 0.000	0.000	0.000
2.000		0.012	0.004	0.003	0.001
3,000		0.030	0.013	0.010	0.003
4.000		0.068	0.026	0.018	0.007
5.000		0.155	0.048	0.035	0.013
6.000		0.340	0.092	0.069	0.022
7.000		0.625	0.164	0.127	0.037
8.000		1.040	0.273	0.214	0.059
9.000		1.550	0.424	0.334	0.091
10.000		2.140	0.618	0.484	0.134
11.000		2.820	0.853	0.665	0.188
12.000		3.600	1.131	0.876	0.255
13.000		4.480	1.453	1.119	0.334
14.000		5.460	1.820	1.394	0.427
15.000		6.530	2.233	1.700	0.533
16.000		7.680	2.691	2.038	0.654
17.000		8.920	3.194	2.405	0.788
18.000		10.220	3.741	2.804	0.937
19.00 0		11.570	4.329	3.229	1.100
20.000		12.980	4.958	3.681	1.277
22.000		15.950	6.333	4.660	1.673
24.000		19.120	7.855	5.732	2.123
26.000		22.390	9.515	6.887	2.627
28.000		25.770	11.298	8.115	3.182
30.000		29.270	13.193	9.407	3.786
32.000		32.910	15.198	10.762	4.436
34.000		36.640	17.305	12.174	5.130

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	т(⁰ К)	С _р	s ^o T	(H ^o -H ^o)/T	-(F ⁰ _T -H ⁰ ₀)/T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.000	40.390	19.505	13.638	5.868
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38.000	44.170	21.790	15.145	6.645
45.00057.32030.33620.6809.65650.00066.81036.86424.81612.04755.00076.11043.67020.05914.61165.00094.13057.85937.69420.16570.000102.75065.15142.03423.11775.000111.20072.52946.36426.16580.000135.16094.95459.19735.757100.000149.740109.95667.52942.427110.000163.620124.88275.63749.245120.000177.150139.70283.53556.167130.000190.030154.39791.23863.159140.000202.220168.93098.73470.196150.000213.910183.282106.02577.257160.000225.290197.453113.12584.328170.000236.550211.441120.04791.395180.000266.420252.283139.797112.486200.000266.420252.283139.797112.486210.000275.550265.504146.045119.459220.000284.500278.530152.136126.394230.000293.230291.369158.081133.288240.000318.110328.840175.136153.704270.000328.510344.770182.250162.510274.000322.50345.798182.710163.087275.000330.600<	40.00 0	47.910	24.151	16.690	7.461
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.000	57.320	30.336	20.680	9.656
55.000 76.110 43.670 29.059 14.611 60.000 85.200 50.684 33.360 17.324 65.000 94.130 57.859 37.694 20.165 70.000 102.750 65.151 42.034 23.117 75.000 111.200 72.529 46.364 226.165 80.000 139.420 79.970 50.675 29.295 90.000 135.160 94.954 59.197 35.757 100.000 149.740 109.956 67.529 42.427 110.000 163.620 124.882 75.637 49.2445 120.000 177.150 139.702 83.535 56.167 130.000 190.030 154.397 91.238 63.159 140.000 202.220 168.930 98.734 70.196 150.000 213.910 183.282 106.025 77.257 160.000 225.290 17.453 113.125 84.328 170.000 236.250 211.441 120.047 91.395 180.000 246.800 225.245 126.796 98.448 200.000 266.420 252.283 139.797 112.486 220.000 284.500 278.530 152.136 126.394 230.000 293.230 291.369 158.081 133.288 240.000 310.120 316.521 169.576 146.945 277.000 326.500 343.398 181.645 161.753 <t< td=""><td>50.000</td><td>66.810</td><td>36.864</td><td>24.816</td><td>12.047</td></t<>	50.000	66.810	36.864	24.816	12.047
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.000	76.110	43.670	29.059	14.611
65.000 94.130 57.859 37.694 20.165 70.000 102.750 65.151 42.034 23.117 75.000 111.200 72.529 46.364 26.165 80.000 135.160 94.954 59.197 35.757 100.000 149.740 109.956 67.529 42.427 110.000 163.620 124.882 75.637 49.245 120.000 177.150 139.702 83.535 $55.167.$ 130.000 190.030 154.397 91.238 63.159 140.000 202.220 168.930 98.734 70.196 150.000 213.910 183.282 106.025 77.257 160.000 225.290 197.453 113.125 84.328 170.000 236.250 211.441 120.047 91.395 180.000 246.800 225.245 126.796 98.448 200.000 266.420 252.283 139.797 112.486 210.000 275.550 265.504 146.0455 119.459 220.000 284.500 278.530 152.136 126.394 230.000 293.230 291.369 158.081 33.288 240.000 310.120 316.521 169.576 146.945 274.000 325.610 340.990 180.574 160.416 277.000 325.610 340.990 180.574 160.416 277.000 330.000 344.770 182.250 162.51	60.00 0	85.200	50.684	33.360	17.324
70.000 102.750 65.151 42.034 22.117 75.000 111.200 72.529 46.364 26.165 80.000 119.420 79.970 50.675 29.295 90.000 135.160 94.954 59.197 35.757 100.000 149.740 109.956 67.529 42.427 110.000 163.620 124.882 75.637 49.2445 120.000 177.150 139.702 83.535 56.167 130.000 190.030 154.397 91.238 63.159 140.000 202.220 168.930 98.734 70.196 150.000 213.910 183.282 106.025 77.257 160.000 225.290 197.453 113.125 84.328 170.000 236.250 211.441 120.047 91.395 180.000 246.800 225.245 126.796 98.448 290.000 246.800 225.283 139.797 112.486 210.000 226.420 252.283 139.797 112.486 220.000 284.500 278.530 152.136 126.394 230.000 293.230 291.369 158.081 133.288 240.000 310.820 304.031 163.892 140.139 250.000 316.10 344.770 182.250 162.510 274.000 326.900 343.398 181.645 161.753 274.000 322.50 345.793 182.710 163.087	65.000	94.130	57.859	37.694	20.165
75.000111.200 72.529 46.36426.165 80.000 119.42079.97050.67529.295 90.000 135.16094.95459.19735.757 100.000 149.740109.95667.52942.427 110.000 163.620124.88275.63749.245 120.000 177.150139.70283.53555.167 130.000 190.030154.39791.23863.159 140.000 202.220168.93098.73470.196 150.000 213.910183.282106.02577.257 160.000 226.290197.453113.12584.328 170.000 236.250211.441120.04791.395 180.000 246.800225.245126.79698.448 190.000 256.890238.862133.382105.481 200.000 266.420252.233139.797112.486 210.000 275.550265.504146.045119.459 220.000 284.500278.530152.136126.394 230.000 232.230291.369158.081133.288 240.000 310.120316.521169.576146.945 274.000 326.900343.398181.645161.753 274.000 326.900343.398181.645161.753 274.000 326.900343.398183.645161.753 274.000 326.900343.398183.645161.753 274.000 332.700350.5821	70.000	102.750	65.151	42.034	23.117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/5.000	111.200	72.529	46.364	26,165
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80.000	119.420	79.970	50.075	29.295
100.000 149.740 109.956 07.329 42.427 110.000 163.620 124.882 75.637 49.245 120.000 177.150 139.702 83.535 56.167 130.000 190.030 154.397 91.238 63.159 140.000 202.220 168.930 98.734 70.196 150.000 213.910 183.282 106.025 77.257 160.000 225.290 197.453 113.125 84.328 170.000 236.250 211.441 120.047 91.395 180.000 246.800 225.245 126.796 98.448 190.000 256.890 238.862 133.382 105.481 200.000 266.420 252.283 139.797 112.486 210.000 275.550 265.504 146.045 119.459 220.000 284.500 278.530 152.136 126.394 230.000 293.230 291.369 158.081 133.288 240.000 301.820 304.031 163.892 140.139 250.000 318.110 328.840 175.136 153.704 272.000 326.900 343.398 181.645 161.753 274.000 322.7610 344.770 182.250 162.510 274.000 322.700 350.582 184.301 165.085 279.000 331.190 349.336 184.301 165.085 279.000 334.870 351.780 185.365	90.000	135.100	94.954	59.197	30./5/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		149.740	109.900	75 627	42.421
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		103.020	124,002	10.007	49.245 56 167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.000	100 030	159.702	01 238	63 159
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/0 000	202 220	168 030	98 734	70 196
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150 000	213 910	- 183 282	106 025	77 257
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160,000	225 290	197 453	113 125	84.328
180.000 246.800 225.245 126.796 98.448 190.000 256.890 238.862 133.382 105.481 200.000 266.420 252.283 139.797 112.486 210.000 275.550 265.504 146.045 119.459 220.000 284.500 278.530 152.136 126.394 230.000 293.230 291.369 158.081 133.288 240.000 301.820 304.031 163.892 140.139 250.000 310.120 316.521 169.576 146.945 260.000 318.110 328.840 175.136 153.704 270.000 325.610 340.990 180.574 160.416 272.000 326.900 343.398 181.645 161.753 273.150 327.610 344.770 182.250 162.510 274.000 328.250 345.798 182.710 163.087 276.000 330.000 348.191 183.771 164.420 277.000 331.190 349.386 184.301 165.085 278.000 332.700 350.582 184.832 165.750 279.000 334.870 351.780 185.365 166.415 280.000 341.700 353.591 186.180 167.411 281.000 345.800 354.202 186.460 167.742 281.500 352.000 354.822 186.748 168.074 282.000 378.800 354.6117 <td>170 000</td> <td>236.250</td> <td>211,441</td> <td>120.047</td> <td>91.395</td>	170 000	236.250	211,441	120.047	91.395
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180.000	246,800	225.245	126,796	98.448
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190.000	256,890	238,862	133,382	105,481
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200.000	266.420	252.283	139.797	112.486
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210.000	275.550	265.504	146.045	119.459
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220.000	284.500	278.530	152.136	126.394
240.000301.820304.031163.892140.139250.000310.120316.521169.576146.945260.000318.110328.840175.136153.704270.000325.610340.990180.574160.416272.000326.900343.398181.645161.753273.150327.610344.770182.250162.510274.000328.250345.798182.710163.087276.000330.000348.191183.771164.420277.000331.190349.386184.301165.085278.000332.700350.582184.832165.750279.000334.870351.780185.365166.415280.000338.600352.984185.905167.079280.500341.700353.591186.180167.411281.000345.800354.202186.460167.742281.500352.000355.464187.058168.074282.000378.800355.464187.058168.406282.500359.400356.117187.380168.737283.000346.350256.740187.671169.069	230.000	293.230	291.369	158.081	133.288
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240.000	301.820	304.031	163.892	140.139
260.000318.110328.840175.136153.704270.000325.610340.990180.574160.416272.000326.900343.398181.645161.753273.150327.610344.770182.250162.510274.000328.250345.798182.710163.087276.000330.000348.191183.771164.420277.000331.190349.386184.301165.085278.000332.700350.582184.832165.750279.000334.870351.780185.365166.415280.000338.600352.984185.905167.079280.500341.700353.591186.180167.411281.000345.800354.202186.460167.742281.500352.000356.117187.380168.737282.000366.350256.740187.671169.069	250.000	310.120	316.521	169.576	146.945
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	260.000	318.110	328.840	175.136	153.704
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270.000	325.610	340.990	180.574	160.416
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272.000	326.900	343.398	181.645	161.753
274.000328.250345.798182.710163.087276.000330.000348.191183.771164.420277.000331.190349.386184.301165.085278.000332.700350.582184.832165.750279.000334.870351.780185.365166.415280.000338.600352.984185.905167.079280.500341.700353.591186.180167.411281.000345.800354.202186.460167.742281.500352.000354.822186.748168.074282.000378.800355.464187.058168.406282.500359.400356.117187.380168.737283.000346.350256.740187.671169.069	273.150	327.610	344.770	182.250	162.510
276.000330.000348.191183.771164.420277.000331.190349.386184.301165.085278.000332.700350.582184.832165.750279.000334.870351.780185.365166.415280.000338.600352.984185.905167.079280.500341.700353.591186.180167.411281.000345.800354.202186.460167.742281.500352.000354.822186.748168.074282.000378.800355.464187.058168.406282.500359.400356.117187.380168.737283.000346.350256.740187.671169.069	274.000	328.250	345.798	182.710	163.087
277.000331.190349.386184.301165.085278.000332.700350.582184.832165.750279.000334.870351.780185.365166.415280.000338.600352.984185.905167.079280.500341.700353.591186.180167.411281.000345.800354.202186.460167.742281.500352.000354.822186.748168.074282.000378.800355.464187.058168.406282.500359.400356.117187.380168.737283.000346.350256.740187.671169.069	276.000	330.000	348.191	183.771	164.420
278.000332.700350.582184.832165.750279.000334.870351.780185.365166.415280.000338.600352.984185.905167.079280.500341.700353.591186.180167.411281.000345.800354.202186.460167.742281.500352.000354.822186.748168.074282.000378.800355.464187.058168.406282.500359.400356.117187.380168.737283.000346.350256.740187.671169.069	277.000	331.190	349.386	184.301	165.085
279.000 334.870 351.780 185.365 166.415 280.000 338.600 352.984 185.905 167.079 280.500 341.700 353.591 186.180 167.411 281.000 345.800 354.202 186.460 167.742 281.500 352.000 354.822 186.748 168.074 282.000 378.800 355.464 187.058 168.406 282.500 359.400 356.117 187.380 168.737 283.000 346.350 256.740 187.671 169.069	278.000	332.700	350.582	184.832	165./50
280.000 338.600 352.984 185.905 167.079 280.500 341.700 353.591 186.180 167.411 281.000 345.800 354.202 186.460 167.742 281.500 352.000 354.822 186.748 168.074 282.000 378.800 355.464 187.058 168.406 282.500 359.400 356.117 187.380 168.737 283.000 346.350 256.740 187.671 169.069	279.000	334.870	351.780	185.365	166.415
280.500 341.700 353.591 186.180 167.411 281.000 345.800 354.202 186.460 167.742 281.500 352.000 354.822 186.748 168.074 282.000 378.800 355.464 187.058 168.406 282.500 359.400 356.117 187.380 168.737 283.000 346.350 256.740 187.671 169.069	280.000	338.600	352.984	185.905	10/.0/9
281.000 345.800 354.202 186.460 167.742 281.500 352.000 354.822 186.748 168.074 282.000 378.800 355.464 187.058 168.406 282.500 359.400 356.117 187.380 168.737 283.000 346.350 256.740 187.671 169.069	280.500	341./00	353,591	180.180	10/.411
281.500 352.000 354.822 185.748 168.074 282.000 378.800 355.464 187.058 168.406 282.500 359.400 356.117 187.380 168.737 283.000 346.350 256.740 187.671 169.069	281.000	345.800	334.2UZ	100.400	10/./46
282.000 378.800 355.464 187.056 168.406 282.500 359.400 356.117 187.380 168.737 283.000 346.350 256.740 187.671 169.069	281.500	352.000	JD4.022	100./40	100.0/4
202.000 309.400 300.117 107.300 100.737 293.000 346.350 256.740 197.671 160.060	202 500	3/8.800	303.404 256 117	107.000	160.400
	202.000	203.400 216 260	256 7/0	107.300	160.737

Table 13. (Continued)

ontinued)
)	ntinuea

т(⁰ К)	С _р	s <mark>o</mark> T	(H ⁰ _T -H ⁰ ₀)/T	-(F ⁰ _T -H ⁰ ₀)/T
283 500	338 700	357 344	187 943	169 400
284.000	337,250	357.939	188,207	169.732
284,500	336,750	358,531	188,469	170.063
285.000	336,650	359.122	188.729	170.394
285.500	336,850	359.712	188,988	170.725
286.000	337.250	360.302	189.247	171.055
288,000	339,910	362.661	190.284	172.378
290.000	342.020	365.021	191.323	173.698
292.000	343.450	367.377	192.361	175.016
294.000	344,370	369.725	193.392	176.333
296.000	344.950	372.061	194.414	177.647
298,000	345.300	374.385	195.426	178.960
298.150	345, 320	374.540	195.520	179.060
300.000	345.500	376.696	195.426	180,270

In the case of Tb^{+3} this number would be 13 from the $^{7}\text{F}_{6}$ state and in the case of Ho^{+3} , 17 from $^{5}\text{I}_{8}$.

As discussed in the introduction, the thermal population of crystal field levels leads to a contribution to the heat capacities of these salts. The heat capacities of the Gd and Lu salts were measured in order that the lattice contributions to the heat capacities of the magnetic salts could be estimated. The magnetic contributions to the heat capacities of the Tb and Ho salts were obtained by subtracting the lattice contributions from the original data points, according to equation II (Gerstein, 1960).

 $C_{M} = \frac{1}{\alpha} \left[Q/\Delta T(R+add.) - \frac{\alpha}{\beta} Q/\Delta T(Lu+add.) + (\frac{\alpha-\beta}{\beta}) Q/\Delta T(add.) - \alpha \Delta C_{lattice} \right]$ (11)

Here, the Lu data were taken to provide the lattice contribution and the last term served to correct for the variation of this contribution across the series. The symbols α and β represent the numbers of moles of the magnetic salt and of the Lu salt respectively. The importance of maintaining α - β is seen in the third term, in that the heat capacity of the addenda tends to cancel from the calculations. $\Delta C_{lattice}$ was determined for each of the magnetic salts by a linear interpolation between the Gd and Lu data. Implicit in this procedure is the assumption that (C_p-C_v) is constant between these two salts. Figures 11 and 12 show the magnetic heat capacities of the Tb and Ho salts.

C. Solution Entropies

Equation 12 describes the process: the crystalline solid at the temperature and pressure in question, in equilibrium with the solute in the saturated solution.

$$RC1_3 \cdot 6H_20(s) \neq RC1_3(sat'd)$$
(12)

Here the solute in solution is considered to be the hydrated species. For this equilibrium, the free energy change is zero. The entropy change can then be calculated from the enthalpy change, which is given by:

$$\Delta H = \bar{H}_2(\text{sat'd}) - \bar{H}_2$$
(13)

Here the superscipt (\cdot) denotes the pure solid component 2, i.e., the solute. This equation can be rewritten as:

$$\Delta H = \bar{H}_2(sat'd) - \bar{H}_2^0 - \bar{H}_2 + \bar{H}_2^0$$
(14)

or,

$$AH = L_2(sat'd) - L_2$$
 (15)

Figure 12. Magnetic heat capacity of HoCl₃·6H₂0

ł,

Both terms on the right hand side of equation 15 are available from solution calorimetry (Pepple, 1967; DeKock, 1965). Similarly the entropy change is given by:

$$\Delta S = \bar{S}_2(\text{sat'd}) - \bar{S}_2$$
(16)

or,

$$\Delta S = [\tilde{S}_{2}(\text{sat'd}) - \tilde{S}_{2}^{\mathcal{A}}] - S_{2} + \tilde{S}_{2}^{\mathcal{A}}$$
(17)

Here $\overline{S}_2 \equiv S_T^0$, the absolute entropy of the crystal, as determined from the present measurements, and $[\overline{S}_2(\operatorname{sat'd}) - \overline{S}_2^{\Re}]$ is the partial molal excess entropy as determined from solution calorimetry (Pepple, 1967; DeKock, 1965). Then, since

$$\Delta H = T \Delta S \tag{13}$$

it follows from equations 15 and 17 that

$$\vec{S}_{2}^{\mathcal{H}} = T^{-1}[\vec{L}_{2}(\text{sat'd}) - \vec{L}_{2}] - [\vec{S}_{2}(\text{sat'd}) - \vec{S}_{2}] + \vec{S}_{T}^{\mathcal{H}}$$
 (19)

The values of S_2^{π} for the salts studied here are listed in Table 14. In principle, the partial molal entropy of the rare earth ion can be obtained by subtracting the contributions to the solute partial molal entropy from the chloride ions and the water molecules in the hydration sphere. This process involves arbitrarily choosing the values of the chloride ion contributions and the result is thus in no sense an "absolute" entropy. The first two columns in Table 14 list the salts for which the entropies have been determined in this present work, and those entropies at 298.15°K, respectively. The next three columns list the solution calorimetry results obtained by DeKock (1965) and by Pepple (1967). The last column gives the entropies from equation 19. The approach used here to obtain \overline{S}_2^0 will be discussed further in another section.

Table 14. Standard state entropies (calories mole⁻¹deg⁻¹, $T = 298.15^{\circ}K$)

Salt	S ^O T	Ē ₂ (sat'd)	ī.	$T[\overline{S}_2(\text{sat'd}) - \overline{S}_2^{\mathfrak{A}}]$	s ₂ ^κ
GdC1 ₃ ·611 ₂ 0	97.17	15,577	9,112	11,402	80.61 ^ª
тьс1 ₃ .6H ₂ 0	96.52	16,260	9,556	11,870	79.19
HoC1 ₃ .6H ₂ 0	96.44	16,720	10,426	11,590	78.68
LuC1 ₃ ·6H ₂ 0	89.52	17,736	11,851	10,944	72.55

 $a \hat{s}_2^{\mathcal{R}} = \hat{s}_2^0 - \nu R \ln m_{\underline{t}}$
V. DISCUSSION

A. Heat Capacities

Previously published heat capacity measurements on several of the salts studied here have already been mentioned. In particular, Hellwege et al. (1961) and Pfeffer (1961a, 1962) have made measurements on the Gd and on the Ho and Lu salts respectively. Figure 13 relates the present and previous results for the Gd and Ho salts. The bumps above 100⁰K were caused by the presence of occluded water in the crystals used by the latter authors (see the discussion under "Sample"). The maximum magnitudes of these "water bumps" is of the order of 2% of the heat capacity e.g., in the case of the Gd salt. Below 100°K, the heat capacity results tend to be insensitive to the presence of occluded water. The irregularity in the range 110° K<T<150°K is difficult to explain on the basis of the available information. However, the discontinuity in Pfeffer's values at 104⁰K suggests the possibility of a discontinuity in his thermometer table. The difference function in the case of the Lu salt is similar to the curves shown. The behavior of the Lu curve is not nearly as striking however, because the water bump becomes obvious only above 200°K, near the highest temperatures reported. The heat capacity of the Tb salt has not been previously reported.

The anomalous behavior of the heat capacity of the Lu salt has been briefly discussed in an earlier section. It was shown there that occluded water was most likely not the cause of the bump. Another possible explanation was the occurrence of a structural change in the crystal at about 280^oK. Considerable evidence exists that all of the salts studied here are

Figure 13. Difference function relating the present and some previously published $GdCl_3 \cdot 6H_20$ and $HoCl_3 \cdot 6H_20$ heat capacities

isostructural. Thus Marezio, <u>et al.</u> (1961) and Belskii and Struchkov (1965) have determined the structures of the Gd and Eu salts respectively, and have found them to be completely analogous. Graeber, <u>et al.</u> (1966) have published the lattice constants of the salts of the members of the series from Sm through Tm. The latter authors found that, in accordance with the lanthanide contraction, the unit cell volumes decrease approximately linearly across the series.

In order to investigate the possibility of a structure change in the Lu salt, two sets of x-ray photographs were obtained. The first set consisted of powder photographs of the Ho and the Lu salts. Comparison of the films indicated that these two salts are isostructural at room temperature. The second set consisted of two precession photographs of a single crystal of LuCl₃·6H₂O at two different temperatures. Figure 14 shows these photographs. The sample was at room temperature for the exposure in part (a), and at about 220°K in part (b). Part (c) shows the two photographs superimposed. To the extent that the spots represent dimensionless points, the photographs give a mapping of the reciprocal lattice. Each point in the reciprocal lattice corresponds to a set of planes in the lattice of the crystal. Thus the comparison in part (c) indicates that the crystal is isostructual with respect to the size and shape of the unit cell on each side of the heat capacity anomaly. Further comparison of the photographs, for which the exposure times were not identical, suggests from the relative incensities that there is probably no minor shift in the positions of the heavier atoms that could be readily associated with the anomaly.

B. Magnetic Heat Capacities

Evidence exists (Levy, 1964; Duffy <u>et al.</u>, 1963; and Hellwege <u>et al.</u>, 1961) that the ground state of $Gd^{1\cdot3}$ in $GdCl_3 \cdot 6H_20$ is split by the crystal field to the extent of about 1 wave number. In order to obtain the lattice heat capacity of the Gd salt, it was necessary to account for the heat capacity contribution from this splitting.

The approach taken was to fit the low temperature ($T \le 3^{\circ}K$) data of Hellwege <u>et al.</u> (1961) with a heat capacity term based on a reasonable estimate of the energy level structure. The assumption was made that the $^{8}S_{7/2}$ state splits into four equally spaced, doubly degenerate levels. The corresponding magnetic (or "Schottky") heat capacity was calculated from equation 20:

$$C_{\text{Schottky}} = \frac{\delta E}{\delta T} = \frac{Mk}{Z^2} \left[\sum_{i=1}^{n} g_i \left(\frac{E_i}{kT} \right)^2 e^{-E_i/kT} - \left(\sum_{i=1}^{n} g_i \frac{E_i/kT}{kT} e^{-E_i/kT} \right)^2 \right]$$
(20)

where

$$E = \frac{N(\Sigma)}{i=1} \frac{gi Ei e^{-Ei/kT}}{(\Sigma gi e^{-Ei/kT})}$$
(21)

and

$$Z = \begin{pmatrix} n \\ \Sigma & g \dagger e^{-E \dagger / kT} \end{pmatrix}$$
(22)

E is the average energy of the ensemble of representative systems. Z is the system partition function. The symbol n is the number of eigen states of each representative system. The symbols Ei and gi are the energy relative to the ground level, and the degeneracy of level "i". Figure 15 shows the heat capacity of $GdCl_3 \cdot 6H_2O$ below $10^{O}K$. The Schottky heat capacity term and Hellwege's data agree to within several percent at temperatures for which the lattice term is relatively small. Moreover, the Schottky term also agrees well with the estimate of the magnetic contribution given by Levy (1964). This agreement suggests that the lattice term, obtained by subtracting the Schottky term from the measured heat capacity, is reliable to at least within the precision of my data below $15^{O}K$.

The magnetic contributions to the heat capacities of the Ho and Tb salts were compared with the optical spectroscopic results of Kahle (1956) and Dieke (1968). The energy levels published by these authors are shown in Figure 15. Figure 12 shows the magnetic heat capacity of HoCl₂·6H₂O as a function of temperature, plotted for convenience on a logarithmic scale. The triangles represent the calorimetrically determined results. The error bars are associated with these points and represent the precision of the raw heat capacity data. Above about 20° K, the uncertainties involved in the subtraction of the lattice contribution become increasingly important and make it difficult to estimate the precision. It is reasonable though, to regard the high temperature points as being known to no better than $\pm 8\%$. The circles represent Kahle's (1956) results for the lowest four levels of the ${}^5\mathrm{I}_8$ term in Ho ${}^{+3}$ in the trichloride hexahydrate, obtained from the absorption spectrum. The agreement is seen to be within experimental error. For the Tb results, there is a major difference between the calorimetric and the spectroscopic heat capacities as is shown in Figure 11. Again the triangles represent the calorimetric data. The heat capacity results require the existence of

Figure 15. Heat capacity of $GdCl_3 \cdot 6H_20$ in the temperature region below $10^{\circ}K$

רון

low-lying levels within approximately 8 wave numbers of the ground state. The results of Dieke (1968), from the fluorescence spectrum, have the lowest level at about 35 wave numbers. No estimate of the precision of these particular spectroscopic results has been given. However, the width of the lowest energy fluorescence band is such that quite possibly the spectrograph failed to resolve a relatively low intensity emission peak. The existence of such a low-lying level would require that a higher energy level had been improperly assigned. Figure 16 shows that there is some uncertainty indicated in, for example, the level at 83.8 wave numbers, as well as in several of the others.

The dashed curve in Figure 11 corresponds to a Schottky term (equation 19) involving two levels. The parameters g_1 and E_1 were chosen under the assumption that the lowest temperature heat capacity point represents a local maximum in the magnetic heat capacity. In the absence of heat capacity data below 5°K for the Tb salt, this approximation was used to extrapolate C_n to $0^{\circ}K$ for the calculation of the thermodynamic functions. As the magnetic entropy is essentially fully developed at 300^{9} K, the validity of this approach can be approximately checked. The magnitude of the entropy also serves as a check on the approximation to the lattice contribution. A comparison of the magnetic entropies of the Ho and Tb salts at 300°K shows that the values for the former salt is about 85% of Rln(2J+1) while that for the latter is about 80% of Rln(2J+1). There is some justification for making such a comparison, in that the crystal field potentials for each case might reasonably be expected to be of the same order of magnitude. The comparison does suggest that if the magnetic entropy for the Tb salt is in error, it is probably low by several percent. In this

Figure 16. Ground state crystal field splittings from optical spectra

 Tb^{+3} IN $TbCl_3$ · 6 H₂O; DIEKE, ET. AI. (1968) Ho⁺³ IN HoCl_3 · 6 H₂O; KAHLE (1956) (LOWEST FOUR LEVELS)

30.63

- 17. 68 - 8.69

Ho ⁵I8

event, the error introduced in the total entropy S_T^o at room temperature is of the order of 0.25%. More certain conclusions must await the availability of heat capacity data for the Tb salt below 5⁰K.

C. Solution Entropies

Extensive investigations of the thermodynamic and transport properties of aqueous rare earth salt solutions have been conducted in the Ames Laboratory over approximately the last twenty years. From these investigations it has been observed that many solution properties, such as ϕ_{v} , ϕ_{L} , and $\phi_{\rm cp}$, vary irregularly as functions of rare earth atomic number. The behavior of these properties is usually interpreted in terms of the expected interactions between the water molecules and the rare earth ions. It has been postulated that a rare earth icn, being strongly hydrated, and having a certain number of water molecules in its first hydration sphere, may exist in equilibrium with similar ions which have either a larger or smaller hydration sphere coordination number. As the ionic radius decreases with increasing atomic number, past a certain critical value, the equilibrium concentration shifts in favor of the species having the smaller coordination number. Thus, the radius of the first hydration sphere decreases with that of the rare earth ion until the mutually ropulsive interactions among the water molecules cause the lower hydration number to represent the more favorable situation. The shift in the equilibrium is usually considered to take place gradually between Nd and Tb.

Among the properties which, for the rare earths, are non-linear in atomic number is $(\overline{S}_2 - \overline{S}_2^{\mathcal{H}})$, the partial molal excess entropy of the solute (DeKock, 1965; Pepple, 1967). On the basis of the above postulate, the

general decrease in $(\bar{S}_2 - \bar{S}_2^{R})$ with increase in atomic number has been interpreted as being the result of the ordering effect of the ions on the water molecules. The ions exhibit an increasing influence on the orientations of the surrounding water molecules as their charge densities increase. As the relative concentration of the lower hydrated species increases i.e., at a given total solute concentration, \bar{S}_2 increases. This can be related to an expected increase in the freedom of motion of the solvent that results from there being a greater average number of water molecules outside the first hydration sphere.

There is a basic difficulty involved in making comparisons among the values of relative properties [such as $(\tilde{S}_2 - \tilde{S}_2^R)$] of different chemical systems. It is that differences among the standard state values of thermodynamic properties may be significant in the comparison of relative properties. In the present case it might be desirable to compare the magnetic contributions to \tilde{S}_2 for say, the odd and even atomic numbered rare earths. In the case of relative partial molal entropies, the absolute values of the solutes are available from the third law entropy of the salt and the existing results of measurements of solution thermodynamic properties. When heat capacity results of the type presented here become available for more members of the series, it will be possible to make more meaningful comparisons among the partial molal entropies, since their values will be relative to S_T^0]T=0, taken as zero, by the third law.

The calculation of \tilde{S}_2^{π} as presented here involves a different approach from that used by Hinchey and Cobble (1970), and so a direct comparison of the values obtained in each case is not very meaningful. The latter authors estimated the entropies of the crystals, primarily from the heat

capacity measurements of Hellwege <u>et al.</u> (1961) and of Pfeffer (1961a, 1961b, and 1962). These measurements have been shown to be in error by as much as 2%, due to occluded water. The estimated entropies differ from the present values by as much as 3 or 4% as in the case of the Gd salt. Hinchey and Cobble did not have the presently available solution calorimetry results and so they approached the problem of calculating \overline{S}_2^0 via the calculation of the standard state free energy change for the process represented by equation 12, i.e., by means of the solubility product.

VI. BIBLIOGRAPHY

Arrhenius, S. (1887), Z. Physik Chem. 1, 631.

Ashworth, T. and Steeple, H. (1968), Cryogenics 8, 225.

Atkinson, G. (1956), The compressibilities of some rare earth nitrates and chlorides in aqueous solution. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.

Belskii, N. K. and Struchkov, Yu. T. (1965), Soviet Physics-Crystallography 10 (1), 15.

Berry, R. J. (1963), Can. J. Phys. 41, 946.

Betts, R. H. and Dahlinger, O. F. (1959), Can. J. Chem. 37, 91.

Bisbee, W. R. (1960), Some calorimetric studies of the metals and chlorides of Thulium and Lutetium. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.

Bommer, H. and Hohmann, E. (1941), Z. Anorg. Allg. Chem. 248, 357.

Brady, G. W. (1960), J. Chem. Phys. 33, 1079.

Clay, R. M. and Staveley, L. A. K. (1966), Trans. Faraday Soc. 62, 3065.

Csejka, D. A. (1961), Some thermodynamic properties of aqueous rare earth chloride solutions. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.

Debye, P. and Hückel, E. (1923a), Physik Z. <u>24</u>, 185. Original not available; cited in Onsager, L. and Fuoss, R. M. (1932), J. Phys. Chem. 36, 2689.

Debye, P. and Hückel, E. (1923b), Physik Z. 24, 305. Original not available; cited in Onsager, L. and Fuoss, R. M. (1932), J. Phys. Chem. 36, 2689.

DeKock, C. M. (1965), Heats of dilution of some aqueous rare earth chloride solutions at 25°C. Unpublished Ph.D. thesis. Ames, Icwa, Library, Iowa State University of Science and Technology.

Dieke, G. H. (1968), Spectra and Energy Levels of Rare Earth Lons in Crystals, New York, N.Y., Interscience Publishers.

Duffy, W. T., Lubbers, J., Van Kempen, H., Haseda, T., and Miedema, A. R. (1963), Antiferromagnetic spin ordering below 1°K, in Proceedings of the 8th International Conference on Low Temperature Physics, Davies, R. O., Fd., Mashington, D.C., Butterworths. Dye, J. L. and Spedding, F. H. (1954), J. Amer. Chem. Soc. <u>76</u>, 888.

- Edelin De La Praudiere, P. L. and Staveley, L. A. K. (1964), J. Inorg. Nucl. Chem. <u>26</u>, 1713.
- Gaede, W. (1902), Physik Z. 4, 105. Original not available; cited in Westrum, E. F., Furukawa, G. T., and McCullough, J. P. (1968), Adiabatic low-temperature calorimetry, in Experimental Thermodynamics, McCullough, J. A. and Scott, D. T., Eds., New York, N.Y., Plenum Press, Vol. 1, p. 133.

Gehring, F. D. and Gerstein, B. C. (1967), Rev. Sci. Instrum. <u>38</u>, 280.

- Gerstein, B. C. (1960), Heat capacity and magnetic susceptibility of Thulium Ethylsulfate. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.
- Gildseth, W. M. (1964), Volume-temperature relationships of some rareearth chloride solutions. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.

Ginnings, D. C. and Furukawa, G. T. (1953), J. Amer. Chem. Soc. 72, 522.

- Gopal, E. S. R. (1966), Specific Heats at Low Temperatures, New York, N.Y., Plenum Press.
- Graeber, E. J., Cenrad, G. H., and Dulier, S. F. (1966), Acta Crystallogr. <u>21</u>, 1012.

Grenthe, I. (1954), Acta Chem. Scand. 18, 293.

Haeseler, G. and Matthes, F. (1965), J. Less-Common Metals 9, 133.

Hall, R. E. and Harkins, M. D. (1916), J. Amer. Chem. Soc. 38, 2658.

Hansen, M. (1958), Constitution of Binary Alloys, New York, N.Y., McGraw-Hill, p. 303.

Harned, H. S. and Owen, B. 3. (1943), The Physical Chemistry of Electrolytic Solutions, 1st ed, New York, M.Y., Reinhold Publishing Corporation.

Heiser, D. J. (1958), A study of thermodynamic properties of electrolytic solutions of many earths. Unpublished Ph.D. thesis. Ames, Iowa, ilbrary, Iowa State University of Science and Technology.

Hellwage, K. H., Johnson, U., and Pfeffer, W. (1959), Z. Phys. <u>154</u>, 301.
Hellwage, K. H., Küch, F., Niemann, K., and Pfeffer, W. (1961), Z. Phys. <u>162</u>, 358.

Hellwege, K. H., Pfeffer, W., and Thiel, H. J. (1962), Z. Phys. 168, 474.

Hinchey, R. J. and Cobble, J. W. (1970), Inorg. Chem. 9 (4), 917. Jekel, E. C., Criss, C. M., and Cobble, J. W. (1964), J. Amer. Chem. Soc. 86, 5404. Jenkins, I. L. and Monk, C. B. (1950), J. Amer. Chem. Soc. 72, 2695. Jonas, G. and Bickford, C. F. (1934), J. Amer. Chem. Soc. 56, 602. Kahle, H. G. (1956), Z. Phys. 145, 347. Kolthoff, I. M. and Sandell, E. B. (1952), Textbook of Quantitative Inorganic Analysis, 3rd ed, New York, N.Y., The Macmillan Company. Krumholz, P. (1964), Solution chemistry, in Progress in the Science and Technology of Rare Earths, Eyring, L., Ed., New York, N.Y., The Macmillan Company, Vol. 1, p. 110. La Mer, V. K. and Goldman, F. H. (1929), J. Amer. Chem. Soc. 51, 2632. Lange, E. and Miederer, W. (1955), Z. Electrochem. 60, 362. Latimer, W. M. (1951), J. Amer. Chem. Soc. 73, 1480. Levy, P. M. (1964), J. Phys. Chem. Solids 25, 431. Lowis, G. N. (1901), Proc. Amer. Acad. Arts Sci. 37, 49. Lewis, G. N. (1907), Proc. Amer. Acad. Arts Sci. <u>43</u>, 259. Lowis, G. N. and Randall, M. (1961), Thermodynamics, revised by Pitzer, K. S. and Brewer, L., New York, N.Y., McGraw-Hill. Lohr, H. R. and Cunningham, B. B. (1951), J. Amer. Chem. Soc. 73, 2025. Longsworth, L. G. and MacInnes, D. A. (1938), J. Amer. Chem. Soc. 60, 3070. Mackey, J. L., Powell, J. E., and Spedding, F. H. (1962), J. Amer. Chem. Soc. 84, 2047. Marezio, M., Plettinger, H. A., and Zachariasen, W. H. (1961), Acta Crystallegr. 14, 234. Mason, C. M. (1938), J. Amer. Chem. Soc. 60, 1638. Mason, C. M. (1941), J. Amer. Chem. Soc. 63, 220. Matignon, C. (1906a), Ann. Chim. Phys., Series 8, 8, 402.

Matignon, C. (1906b), Ann. Chim. Phys., Series 8, 8, 426.

Milner, S. R. (1912), Phil. Mag., Series 6, 23, 551.

Milner, S. R. (1913), Phil. Mag., Series 6, 25, 742.

- Moeller, T., Birnbaum, E. R., Forsberg, J. H., and Gayhart, R. B. (1968), Some aspects of the co-ordination chemistry of the rare earth metal ions, in Progress in the Science and Technology of the Rare Earths, Eyring, L., Ed., New York, N.Y., Pergamon Press, Vol. 3, p. 61.
- Nathan, C. C., Wallace, W. E., and Robinson, A. L. (1943), J. Amer. Chem. Soc. 65, 790.
- Nelson, R. A. (1960), Some thermodynamic properties of aqueous solutions of Terbium. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.
- Nernst, W. (1910), Sitz. kgl. preuss. Akad. Wiss. <u>12</u>, (13), 261. Original not available; cited in Chem. Abstr. (1910), <u>4</u>, 2397.
- Noyes, A. A. (1924), J. Amer. Chem. Soc. 46, 1080.
- Noyes, A. A. and Johnson, J. (1909), J. Amer. Chem. Soc. 31, 987.
- Onsager, L. (1927), Physik Z. 28, 227. Original not available; cited in Harned, H. S. and Owen, B. B., The Physical Chemistry of Electrolytic Solutions, 1st ed, New York, N.Y., Reinhold Publishing Corporation.

Onsager, L. and Fuoss, R. M. (1932), J. Phys. Chem. 36, 2689.

- Pepple, G. W. (1967), Relative apparent molal heat contents of some aqueous rare-earth chloride solutions at 25°C. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.
- Petheram, H. H. (1963), Osmotic and activity coefficients of some aqueous rare-earth chloride solutions at 25°C. Unpublished M.S. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.
- Pfeffer, M. (1961a), Z. Phys. 162, 413.
- Pfeffer, M. (19615), Z. Phys. 164, 295.
- Pfeffer, W. (1962), Z. Phys. 168, 305.
- Robinson, R. A. (1937), J. Amer. Chem. Soc. 59, 84.
- Robinson, R. A. (1939), Trans. Faraday Soc. 35, 1229.
- Robinson, R. A. and Stokes, R. H. (1955), Electrolyte Solutions, New York, N.Y., Academic Press Incorporated.

Saeger, V. W. (1960), Some physical properties of rare-earth chlorides in aqueous solution. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.

Shedlovsky, T. (1950), J. Amer. Chem. Soc. 72, 3680.

Shedlovsky, T. and MacInnes, D. A. (1939), J. Amer. Chem. Soc. 61, 200.

Sieverts, A. and Gotta, A. (1928), Anorg. Allg. Chem. 172, 1.

Skochdopole, R. E. (1954), Low temperature heat capacities of Thorium, Gadolinium and Erbium. Unpublished Ph.D. thesis. Ames, Iowa, Library, Icwa State University of Science and Technology.

- Spedding, F. H. and Atkinson, G. (1959), Properties of rare earth salts in electrolytic solutions, in The Structure of Electrolytic Solutions, Hamer, W. J., Ed., New York, N.Y., John Wiley and Sons Incorporated, p. 319.
- Spedding, F. H., Csejka, D. A., and DeKock, C. W. (1966), J. Phys. Chem. 70, 2423.
- Spedding, F. H. and Daane, A. H., Eds. (1961), The Rare Earths, New York, N.Y., John Wiley and Sons Incorporated.

Spedding, F. H. and Dye, J. L. (1954), J. Amer. Chem. Soc. 76, 879.

Spedding, F. H. and Flynn, J. P. (1954a), J. Amer. Chem. Soc. 76, 1474.

Spedding, F. H. and Flynn, J. P. (1954b), J. Amer. Chem. Soc. 76, 1477.

Spedding, F. H. and Jaffe, S. (1954a), J. Amer. Chem. Soc. 76, 882.

Spedding, F. H. and Jaffe, S. (19545), J. Amer. Chem. Soc. 76, 384.

Spedding, F. H. and Jones, K. C. (1966), J. Phys. Chem. 70, 2450.

Spedding, F. H. and Miller, C. F. (1952a), J. Amer. Chem. Soc. 74, 3158.

Spedding, F. H. and Miller, C. F. (19525), J. Amer. Chem. Soc. 74, 4195.

Spedding, F. H., Naumann, A. M., and Eberts, R. E. (1959), J. Amer. Chem. Soc. 81, 23.

Spedding, F. H. and Pikal, M. J. (1966), J. Phys. Chem. 70, 2430.

Spedding, F. H., Pikal, M. J., and Ayers, B. O. (1966), J. Phys. Chem. 70, 2440.

Spedding, F. H., Porter, P. E., and Wright, J. M. (1952a), J. Amer. Chem. Soc. <u>74</u>, 2055. Spedding, F. H., Porter, P. E., and Wright, J. M. (1952b), J. Amer. Chem. Soc. 74, 2778.

Spedding, F. H., Porter, P. E., and Wright, J. M. (1952c), J. Amer. Chem. Soc. 74, 2781.

Spedding, F. H. and Yaffe, I. S. (1952), J. Amer. Chem. Soc. 74, 4751.

- Walters, J. P. (1968), Partial molar heat capacities of some aqueous rare earth chlorides, nitrates, and perchlorates from tenth molal to saturation at 25°C. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University of Science and Technology.
- Westrum, E. F., Chien Chou, Osborne, D. W., and Flotow, H. E. (1967), Cryogenics 7 (1), 43.
- Westrum, E. F., Furukawa, G. T., and McCullough, J. P. (1968), Adiabatic low-temperature calorimetry, in Experimental Thermodynamics, McCullough, J. P. and Scott, D. T., Eds., New York, N.Y., Plenum Press, Vol. 1, p. 133.

White, G. K. (1968), Experimental Techniques in Low-Temperature Physics, 2nd ed, London, Oxford University Press.

White, M. P. (1914a), J. Amer. Chem. Soc. 36, 1856.

White, W. P. (1914b), J. Amer. Chem. Soc. 36, 1868.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. B. C. Gerstein and to Dr. F. H. Spedding for their suggestions about, guidance of, and continued interest in this work. Thanks are also due: to Dr. H. F. Franzen for some valuable discussions of the interpretation of the results, to the personnel of the groups directed by Dr. V. A. Fassel, Dr. H. J. Svec, and Dr. C. V. Banks for performing the analyses of the samples, and to Mr. C. B. Thaxton for providing the precession photographs of the Lu salt. Most especially is the author in debt to his wife not only for typing the rough draft and checking the bibliography of this thesis, but for her general patience during some trying times.